Stochastic Control


Book Description

Stochastic control, the control of random processes, has become increasingly more important to the systems analyst and engineer. The Second IFAC Symposium on Stochastic Control represents current thinking on all aspects of stochastic control, both theoretical and practical, and as such represents a further advance in the understanding of such systems.




Dynamic Feature Space Modelling, Filtering and Self-Tuning Control of Stochastic Systems


Book Description

The literature on systems seems to have been growing almost expo nentially during the last decade and one may question whether there is need for another book. In the author's view, most of the literature on 'systems' is either technical in mathematical sense or technical ifF engineering sense (with technical words such as noise, filtering etc. ) and not easily accessible to researchers is other fields, in particular not to economists, econometricians and quantitative researchers in so cial sciences. This is unfortunate, because achievements in the rather 'young' science of system theory and system engineering are of impor tance for modelling, estimation and regulation (control) problems in other branches of science. State space mode~iing; the concept of ob servability and controllability; the mathematical formulations of sta bility; the so-called canonical forms; prediction error e~timation; optimal control and Kalman filtering are some examples of results of system theory and system engineering which proved to be successful in practice. A brief summary of system theoretical concepts is given in Chapter II where an attempt has been made to translate the concepts in to the more 'familiar' language used in econometrics and social sciences by means of examples. By interrelating concepts and results from system theory with those from econometrics and social sciences, the author has attempted to narrow the gap between the more technical sciences such as engi neering and social sciences and econometrics, and to contribute to either side.




Design and Control of Self-organizing Systems


Book Description

Complex systems are usually difficult to design and control. There are several particular methods for coping with complexity, but there is no general approach to build complex systems. In this book I propose a methodology to aid engineers in the design and control of complex systems. This is based on the description of systems as self-organizing. Starting from the agent metaphor, the methodology proposes a conceptual framework and a series of steps to follow to find proper mechanisms that will promote elements to find solutions by actively interacting among themselves.




Self-Organizing Systems


Book Description

Technological systems become organized by commands from outside, as when human intentions lead to the building of structures or machines. But many nat ural systems become structured by their own internal processes: these are the self organizing systems, and the emergence of order within them is a complex phe nomenon that intrigues scientists from all disciplines. Unfortunately, complexity is ill-defined. Global explanatory constructs, such as cybernetics or general sys tems theory, which were intended to cope with complexity, produced instead a grandiosity that has now, mercifully, run its course and died. Most of us have become wary of proposals for an "integrated, systems approach" to complex matters; yet we must come to grips with complexity some how. Now is a good time to reexamine complex systems to determine whether or not various scientific specialties can discover common principles or properties in them. If they do, then a fresh, multidisciplinary attack on the difficulties would be a valid scientific task. Believing that complexity is a proper scientific issue, and that self-organizing systems are the foremost example, R. Tomovic, Z. Damjanovic, and I arranged a conference (August 26-September 1, 1979) in Dubrovnik, Yugoslavia, to address self-organizing systems. We invited 30 participants from seven countries. Included were biologists, geologists, physicists, chemists, mathematicians, bio physicists, and control engineers. Participants were asked not to bring manu scripts, but, rather, to present positions on an assigned topic. Any writing would be done after the conference, when the writers could benefit from their experi ences there.




Dynamic Programming and Stochastic Control


Book Description

Dynamic Programming and Stochastic Control




Advanced Mathematical Tools for Automatic Control Engineers: Volume 2


Book Description

Advanced Mathematical Tools for Automatic Control Engineers, Volume 2: Stochastic Techniques provides comprehensive discussions on statistical tools for control engineers. The book is divided into four main parts. Part I discusses the fundamentals of probability theory, covering probability spaces, random variables, mathematical expectation, inequalities, and characteristic functions. Part II addresses discrete time processes, including the concepts of random sequences, martingales, and limit theorems. Part III covers continuous time stochastic processes, namely Markov processes, stochastic integrals, and stochastic differential equations. Part IV presents applications of stochastic techniques for dynamic models and filtering, prediction, and smoothing problems. It also discusses the stochastic approximation method and the robust stochastic maximum principle. - Provides comprehensive theory of matrices, real, complex and functional analysis - Provides practical examples of modern optimization methods that can be effectively used in variety of real-world applications - Contains worked proofs of all theorems and propositions presented




Linear Stochastic Systems


Book Description

Linear Stochastic Systems, originally published in 1988, is today as comprehensive a reference to the theory of linear discrete-time-parameter systems as ever. Its most outstanding feature is the unified presentation, including both input-output and state space representations of stochastic linear systems, together with their interrelationships. The author first covers the foundations of linear stochastic systems and then continues through to more sophisticated topics including the fundamentals of stochastic processes and the construction of stochastic systems; an integrated exposition of the theories of prediction, realization (modeling), parameter estimation, and control; and a presentation of stochastic adaptive control theory. Written in a clear, concise manner and accessible to graduate students, researchers, and teachers, this classic volume also includes background material to make it self-contained and has complete proofs for all the principal results of the book. Furthermore, this edition includes many corrections of errata collected over the years.




Applied Control


Book Description

This book provides a representative set of modern methodologies and applications, including new topics in the field, discussing a wide range of issues and treating them in depth. The book describes analytical processes for fault diagnosis of automatic control systems, examines modern sensors and actuators as well as measurement techniques, considers multidimensional feedback control and image restoration procedures, among other topics.




Control Systems


Book Description

An Introduction To Control Systems, This Book Provides The Reader With The Basic Concepts Of Control Theory As Developed Over The Years In Both The Frequency Domain And The Time Domain. The Opening Chapters Of The Book Present A Unified Treatment Of Modelling Of Dynamic Systems, The Classical Material On The Performance Of Feedback Systems Based On The Transfer Function Approach And The Stability Of Linear Systems. Further, Various Types Of Frequency Response Plots And The Compensation Of Control Systems Have Been Presented. In Particular, The Trial-And-Error Approach To The Design Of Lead Compensators, As Found In Most Textbooks, Has Been Replaced By A Direct Method Developed In The Late 1970S.Moreover, The Design Of Pole-Placement Compensators Using Transfer Functions, The Counterpart Of The Combined Observer And State Feedback Controller, Has Been Included For The First Time In A Book Appropriate For Undergraduate And Practicing Engineers. In This Third Edition The Scheme For Pole-Placement Compensation Has Been Made Consistent With That In Chapter 12. The Chapter On Digital Control, A Rapidly Developing And Popular Area Has Been Dealt With, In An Up-To-Date Manner, This Book Is An Attempt To Aid The Student Remove The Drudgery Out Of Numerical Computations, Along With Numerous Worked Examples And Drill Problems With Answers To Help The Student In Mastering The Subject.