Adaptive Approximation Based Control


Book Description

A highly accessible and unified approach to the design and analysis of intelligent control systems Adaptive Approximation Based Control is a tool every control designer should have in his or her control toolbox. Mixing approximation theory, parameter estimation, and feedback control, this book presents a unified approach designed to enable readers to apply adaptive approximation based control to existing systems, and, more importantly, to gain enough intuition and understanding to manipulate and combine it with other control tools for applications that have not been encountered before. The authors provide readers with a thought-provoking framework for rigorously considering such questions as: * What properties should the function approximator have? * Are certain families of approximators superior to others? * Can the stability and the convergence of the approximator parameters be guaranteed? * Can control systems be designed to be robust in the face of noise, disturbances, and unmodeled effects? * Can this approach handle significant changes in the dynamics due to such disruptions as system failure? * What types of nonlinear dynamic systems are amenable to this approach? * What are the limitations of adaptive approximation based control? Combining theoretical formulation and design techniques with extensive use of simulation examples, this book is a stimulating text for researchers and graduate students and a valuable resource for practicing engineers.




Self-organizing and Optimal Control for Nonlinear Systems


Book Description

Vehicle formation control is one of important research topics in transportation. Control of uncertain nonlinear systems is one of fundamental problems in vehicle control. In this dissertation, we consider this fundamental control problem. Specially, we considered self-organizing based tracking control of uncertain nonaffine systems and optimal control of uncertain nonlinear systems. In tracking control of nonaffine systems, a self-organizing online approximation based controller is proposed to achieve a prespecified tracking accuracy, without using high-gain control nor large magnitude switching. For optimal control of uncertain nonlinear systems, we considered point-wise min-norm optimal control of uncertain nonlinear systems and approximately optimal control of uncertain nonlinear systems. In point-wise non-norm optimal control, optimal regulation and optimal tracking controllers were proposed with the aid of locally weighted learning observers. By introducing control Lyapunov functions and redefining the optimal criterions, analytic controllers were proposed and were optimal in the sense of min-norm. In approximately optimal control of uncertain nonlinear systems, adaptive optimal controllers were proposed with the aid of iterative approximation techniques and adaptive control. By iteratively learning, the difficulty of solving Hamilton-Jacobian-Bellman (HJB) equation is overcome. The proposed adaptive optimal algorithms can be applied to solve optimal control problem of a large class of nonlinear systems. To show effectiveness of the proposed controllers for above problems, simulations were done in computers.




The Control Handbook (three volume set)


Book Description

At publication, The Control Handbook immediately became the definitive resource that engineers working with modern control systems required. Among its many accolades, that first edition was cited by the AAP as the Best Engineering Handbook of 1996. Now, 15 years later, William Levine has once again compiled the most comprehensive and authoritative resource on control engineering. He has fully reorganized the text to reflect the technical advances achieved since the last edition and has expanded its contents to include the multidisciplinary perspective that is making control engineering a critical component in so many fields. Now expanded from one to three volumes, The Control Handbook, Second Edition brilliantly organizes cutting-edge contributions from more than 200 leading experts representing every corner of the globe. They cover everything from basic closed-loop systems to multi-agent adaptive systems and from the control of electric motors to the control of complex networks. Progressively organized, the three volume set includes: Control System Fundamentals Control System Applications Control System Advanced Methods Any practicing engineer, student, or researcher working in fields as diverse as electronics, aeronautics, or biomedicine will find this handbook to be a time-saving resource filled with invaluable formulas, models, methods, and innovative thinking. In fact, any physicist, biologist, mathematician, or researcher in any number of fields developing or improving products and systems will find the answers and ideas they need. As with the first edition, the new edition not only stands as a record of accomplishment in control engineering but provides researchers with the means to make further advances.







Self-Organizing Systems


Book Description

This book constitutes the refereed proceedings of the 6th IFIP TC 6 International Workshop on Self-Organizing Systems, IWSOS 2012, held in Delft, The Netherlands, in March 2012. The 5 revised full papers and 5 short papers presented together with 2 invited papers were carefully selected from 25 full paper and 8 short paper submissions. The papers address the following key topics: design and analysis of self-organizing and self-managing systems; inspiring models of self-organization in nature and society; structure, characteristics and dynamics of self-organizing networks; techniques and tools for modeling self-organizing systems; robustness and adaptation in self-organizing systems; self-organization in complex networks like peer-to-peer, sensor, ad-hoc, vehicular and social networks; control of self-organizing systems; decentralized power management in the smart grid; self-organizing group and pattern formation; self-organizing mechanisms for task allocation, coordination and resource allocation; self-organizing information dissemination and content search; and risks and limits of self-organization.




Control of Self-Organizing Nonlinear Systems


Book Description

The book summarizes the state-of-the-art of research on control of self-organizing nonlinear systems with contributions from leading international experts in the field. The first focus concerns recent methodological developments including control of networks and of noisy and time-delayed systems. As a second focus, the book features emerging concepts of application including control of quantum systems, soft condensed matter, and biological systems. Special topics reflecting the active research in the field are the analysis and control of chimera states in classical networks and in quantum systems, the mathematical treatment of multiscale systems, the control of colloidal and quantum transport, the control of epidemics and of neural network dynamics.




Selforganizology: The Science Of Self-organization


Book Description

This invaluable book is the first of its kind on 'selforganizology', the science of self-organization. It covers a wide range of topics, such as the theory, principle and methodology of selforganizology, agent-based modelling, intelligence basis, ant colony optimization, fish/particle swarm optimization, cellular automata, spatial diffusion models, evolutionary algorithms, self-adaptation and control systems, self-organizing neural networks, catastrophe theory and methods, and self-organization of biological communities, etc.Readers will have an in-depth and comprehensive understanding of selforganizology, with detailed background information provided for those who wish to delve deeper into the subject and explore research literature.This book is a valuable reference for research scientists, university teachers, graduate students and high-level undergraduates in the areas of computational science, artificial intelligence, applied mathematics, engineering science, social science and life sciences.




The Mechanical Systems Design Handbook


Book Description

With a specific focus on the needs of the designers and engineers in industrial settings, The Mechanical Systems Design Handbook: Modeling, Measurement, and Control presents a practical overview of basic issues associated with design and control of mechanical systems. In four sections, each edited by a renowned expert, this book answers diverse questions fundamental to the successful design and implementation of mechanical systems in a variety of applications. Manufacturing addresses design and control issues related to manufacturing systems. From fundamental design principles to control of discrete events, machine tools, and machining operations to polymer processing and precision manufacturing systems. Vibration Control explores a range of topics related to active vibration control, including piezoelectric networks, the boundary control method, and semi-active suspension systems. Aerospace Systems presents a detailed analysis of the mechanics and dynamics of tensegrity structures Robotics offers encyclopedic coverage of the control and design of robotic systems, including kinematics, dynamics, soft-computing techniques, and teleoperation. Mechanical systems designers and engineers have few resources dedicated to their particular and often unique problems. The Mechanical Systems Design Handbook clearly shows how theory applies to real world challenges and will be a welcomed and valuable addition to your library.




Approximate Reasoning in Intelligent Systems, Decision and Control


Book Description

Documents realistic applications of approximate reasoning techniques, with emphasis placed on operational systems. The papers presented explore new areas of practical decision-making and control systems by considering important aspects of fuzzy logic theory and the latest developments in the field of expert systems. Specific fields of application covered include modelling and control, management, planning, diagnostics, finance and software. Contains 12 papers.