Self-powered Energy Harvesting Systems for Health Supervising Applications


Book Description

This book highlights the current and recent state-of-the-art developments in energy harvesting systems for health supervising applications. It explores the exciting potential of energy harvesting as a crosscutting field of research to intersect with other areas to envisage new products, solutions, and applications. Among all these new opportunities for synergy, there is a research area that fully matches the features offered by energy harvesting with its power supply's main needs- health supervising (HS), which consists of monitoring the health or operating conditions of anything, such as structures, buildings, public health, environment, etc. The book covers the hand in hand evolution towards a new paradigm: truly self-powered devices based on a single transducer acting as a sensor and as power source simultaneously and efficiently. This evolution is illustrated by the concept and implementation of novel state-of-the-art architecture for self-powered energy harvesting systems for applications that range from structural health monitoring to point-of-care medical devices.




Self-powered Energy Harvesting Systems for Health Supervising Applications


Book Description

This book highlights the current and recent state-of-the-art developments in energy harvesting systems for health supervising applications. It explores the exciting potential of energy harvesting as a crosscutting field of research to intersect with other areas to envisage new products, solutions, and applications. Among all these new opportunities for synergy, there is a research area that fully matches the features offered by energy harvesting with its power supply's main needs- health supervising (HS), which consists of monitoring the health or operating conditions of anything, such as structures, buildings, public health, environment, etc. The book covers the hand in hand evolution towards a new paradigm: truly self-powered devices based on a single transducer acting as a sensor and as power source simultaneously and efficiently. This evolution is illustrated by the concept and implementation of novel state-of-the-art architecture for self-powered energy harvesting systems for applications that range from structural health monitoring to point-of-care medical devices.




Energy Harvesting for Self-Powered Wearable Devices


Book Description

This book discusses the design and implementation of energy harvesting systems targeting wearable devices. The authors describe in detail the different energy harvesting sources that can be utilized for powering low-power devices in general, focusing on the best candidates for wearable applications. Coverage also includes state-of-the-art interface circuits, which can be used to accept energy from harvesters and deliver it to a device in the most efficient way. Finally, the authors present power management circuits for using multiple energy harvesting sources at the same time to power devices and to enhance efficiency of the system.




Energy Harvesting Systems


Book Description

Kinetic energy harvesting converts movement or vibrations into electrical energy, enables battery free operation of wireless sensors and autonomous devices and facilitates their placement in locations where replacing a battery is not feasible or attractive. This book provides an introduction to operating principles and design methods of modern kinetic energy harvesting systems and explains the implications of harvested power on autonomous electronic systems design. It describes power conditioning circuits that maximize available energy and electronic systems design strategies that minimize power consumption and enable operation. The principles discussed in the book will be supported by real case studies such as battery-less monitoring sensors at water waste processing plants, embedded battery-less sensors in automotive electronics and sensor-networks built with ultra-low power wireless nodes suitable for battery-less applications.




Innovative Materials and Systems for Energy Harvesting Applications


Book Description

Wearable electronics, wireless devices, and other mobile technologies have revealed a deficit and a necessity for innovative methods of gathering and utilizing power. Drawing on otherwise wasted sources of energy, such as solar, thermal, and biological, is an important part of discovering future energy solutions. Innovative Materials and Systems for Energy Harvesting Applications reports on some of the best tools and technologies available for powering humanity’s growing thirst for electronic devices, including piezoelectric, solar, thermoelectric, and electromagnetic energies. This book is a crucial reference source for academics, industry professionals, and scientists working toward the future of energy.




Integrated Smart Micro-Systems Towards Personalized Healthcare


Book Description

Integrated Smart Micro-Systems Towards Personalized Healthcare Presents a thorough summary of recent advances in microelectronic systems and their applications for personalized healthcare Integrated Smart Micro-Systems Towards Personalized Healthcare provides up-to-date coverage of developments in smart microelectronics and their applications in health-related areas such as sports safety, remote diagnosis, and closed-loop health management. Using a comprehensive approach to the rapidly growing field, this one-stop resource examines different methods, designs, materials, and applications of systems such as multi-modal sensing biomedical platforms and non-invasive health monitoring sensors. The book’s five parts detail the core units of micro-systems, self-charging power units, self-driven monitor patches, self-powered sensing platforms, and integrated health monitoring systems. Succinct chapters address topics including multi-functional material optimization, multi-dimensional electrode preparation, multi-scene application display, and the use of multi-modal signal sensing to monitor physical and chemical indicators during exercise. Throughout the text, the authors offer key insights on device performance improvement, reliable fabrication processing, and compatible integration designs. Provides an overview self-powered, wearable micro-systems with emphasis on personalized healthcare Covers the working mechanisms and structural design of different energy-harvesting units, energy storage units, and functional units Introduces an integrated self-charging power unit consisting of triboelectric nanogenerators with supercapacitor Describes a general solution-evaporation method for developing porous CNT-PDMS conductive elastomers Examines a fully-integrated self-powered sweat sensing platform built on a wearable freestanding-mode triboelectric nanogenerator Integrated Smart Micro-Systems Towards Personalized Healthcare is an essential text for researchers, electronic engineers, entrepreneurs, and industry professionals working in material science, electronics, mechanical engineering, bioengineering, and sensor development.




Health Monitoring Systems


Book Description

Remote health monitoring using wearable sensors is an important research area involving several key steps: physiological parameter sensing and data acquisition, data analysis, data security, data transmission to caregivers, and clinical intervention, all of which play a significant role to form a closed loop system. Subject-specific behavioral and clinical traits, coupled with individual physiological differences, necessitate a personalized healthcare delivery model for around-the-clock monitoring within the home environment. Cardiovascular disease monitoring is an illustrative application domain where research has been instrumental in enabling a personalized closed-loop monitoring system, which has been showcased in this book. Health Monitoring Systems: An Enabling Technology for Patient Care provides a holistic overview of state-of-the-art monitoring systems facilitated by Internet of Things (IoT) technology. The book lists out the details on biomedical signal acquisition, processing, and data security, the fundamental building blocks towards an ambulatory health monitoring infrastructure. The fundamentals have been complimented with other relevant topics including applications which provide an in-depth view on remote health monitoring systems. Key Features: Presents examples of state-of-the-art health monitoring systems using IoT infrastructure Covers the full spectrum of physiological sensing, data acquisition, processing, and data security Provides relevant example applications demonstrating the benefits of technological advancements aiding disease prognosis This book serves as a beginner’s guide for engineering students of electrical and computer science, practicing engineers, researchers, and scientists who are interested in having an overview of pervasive health monitoring systems using body-worn sensors operating outside the hospital environment. It could also be recommended as a reference for a graduate or master’s level course on biomedical instrumentation and signal processing.




AIoT and Big Data Analytics for Smart Healthcare Applications


Book Description

AIoT (Artificial Intelligence of Things) and Big Data Analytics are catalyzing a healthcare revolution. This book is an accessible volume that summarizes the information available. In this book, researchers explore how AIoT and Big Data can seamlessly integrate into healthcare, enhancing medical services and devices while adhering to established protocols. The book demonstrates the crucial role of these technologies during healthcare crises like the COVID-19 pandemic. It presents novel solutions and computational techniques powered by AIoT, Machine Learning, and Deep Learning, providing a new frontier in healthcare problem-solving. Key Features: Real-Life Illustrations: Real-world examples showcase AIoT and Big Data in action, highlighting their impact in healthcare. Comprehensive Exploration: The book offers a thorough examination of AIoT, Big Data, and their harmonious synergy within the healthcare landscape. Visual Aids: Complex concepts become approachable through diagrams, flowcharts, and infographics, making technical processes and system designs more digestible. Ethical Insights: Delving into the ethical dimensions of AIoT and Big Data, it addresses concerns like data bias, patient consent, and transparency in healthcare. Forward-Looking Discourse: The book engages with emerging trends, potential innovations, and the future direction of AIoT and Big Data, making it a compass for healthcare transformation. Researchers, whether from academia, industry, or research and development organizations, interested in AIoT, Big Data, artificial intelligence, and healthcare optimization, will find this book informative. It also serves as an update for tech enthusiasts who want to explore the future of healthcare powered by AI and data.




Self-powered Sensors


Book Description

Self-powered Sensors: A Path to Wearable Electronics features recent developments in chemical, photonic, pharmaceutical, microbiological, biomimetic, and bio-inspired approaches for MEMS/NEMS and medicinal self-powered sensors. Unconventional nanomaterial sensors driven by self-sufficient energy are given a contemporary review, with a focus on the categorization of energy sources and comparisons of research involving self-powered solar, piezoresistive, triboelectric, and thermodynamic technologies. This book also focuses on the different techniques, materials, comparisons of fabrication of self-powered sensors as well as thermoelectric self-powered sensors and its implantable applications. Presents state-of-the-art technologies and advancements in the design and application of self-powered sensors Examines the advantages and disadvantages of self-powered nanomaterial sensors in terms of energy collecting techniques and sensing applications Reviews the incorporation of self-operating devices and novel uses for neuromorphic sensors




IoT Architectures, Models, and Platforms for Smart City Applications


Book Description

Developing countries are persistently looking for efficient and cost-effective methods for transforming their communities into smart cities. Unfortunately, energy crises have increased in these regions due to a lack of awareness and proper utilization of technological methods. These communities must explore and implement innovative solutions in order to enhance citizen enrollment, quality of government, and city intelligence. IoT Architectures, Models, and Platforms for Smart City Applications provides emerging research exploring the theoretical and practical aspects of transforming cities into intelligent systems using IoT-based design models and sustainable development projects. This publication looks at how cities can be built as smart cities within limited resources and existing advanced technologies. Featuring coverage on a broad range of topics such as cloud computing, human machine interface, and ad hoc networks, this book is ideally designed for urban planners, engineers, IT specialists, computer engineering students, research scientists, academicians, technology developers, policymakers, researchers, and designers seeking current research on smart applications within urban development.