Self-powered wearable IoT sensors as human-machine interfaces


Book Description

Self-powered wearable Internet of Things (IoT) sensors have made a significant impact on human life and health in recent years. These sensors are known for their convenience, durability, affordability, and longevity, leading to substantial improvements in people’s lives. This review summarizes the development of self-powered wearable IoT sensors in recent years. Materials for self-powered wearable sensors are summarized and evaluated, including nanomaterials, flexible materials, and degradable materials. The working mode of self-powered wearable IoT sensors is analyzed, and the different principles of its physical sensing and chemical sensing are explained. Several common technologies for self-powered wearable IoT sensors are presented, such as triboelectric technology, piezoelectric technology, and machine learning. The applications of self-powered IoT wearable sensors in human-machine interfaces are reviewed. Its current shortcomings and prospects for its future development are also discussed. To conduct this review, a comprehensive literature search was performed using several electronic databases, resulting in the inclusion of 225 articles. The gathered data was extracted, synthesized, and analyzed using a thematic analysis approach. This review provides a comprehensive analysis and summary of its working mode, technologies, and applications and provides references and inspiration for related research in this field. Furthermore, this review also identifies the key directions and challenges for future research.




Self-powered Sensors


Book Description

Self-powered Sensors: A Path to Wearable Electronics features recent developments in chemical, photonic, pharmaceutical, microbiological, biomimetic, and bio-inspired approaches for MEMS/NEMS and medicinal self-powered sensors. Unconventional nanomaterial sensors driven by self-sufficient energy are given a contemporary review, with a focus on the categorization of energy sources and comparisons of research involving self-powered solar, piezoresistive, triboelectric, and thermodynamic technologies. This book also focuses on the different techniques, materials, comparisons of fabrication of self-powered sensors as well as thermoelectric self-powered sensors and its implantable applications. - Presents state-of-the-art technologies and advancements in the design and application of self-powered sensors - Examines the advantages and disadvantages of self-powered nanomaterial sensors in terms of energy collecting techniques and sensing applications - Reviews the incorporation of self-operating devices and novel uses for neuromorphic sensors




Triboelectric Nanogenerators


Book Description

This book introduces an innovative and high-efficiency technology for mechanical energy harvesting. The book covers the history and development of triboelectric nanogenerators, basic structures, working principles, performance characterization, and potential applications. It is divided into three parts: Part A illustrates the fundamental working modes of triboelectric nanogenerators with their prototype structures and theoretical analysis; Part B and Part C introduce two categories of applications, namely self-powered systems and self-powered active sensors. The book will be an ideal guide to scientists and engineers beginning to study triboelectric nanogenerators or wishing to deepen their knowledge of the field. Readers will be able to place the technical details about this technology in context, and acquire the necessary skills to reproduce the experimental setups for fabrication and measurement.




Flexible and Stretchable Triboelectric Nanogenerator Devices


Book Description

The book starts with the fundamentals of triboelectric nanogenerators (TENGs), and continues through to fabrication technologies to achieve flexible and stretchable. Then self-powered flexible microsystems are introduced and application examples are presented, including TENG-based active sensors, TENG-powered actuators, artificial intelligence and integrated systems.




Biochemical Sensors (In 2 Volumes)


Book Description

This book covers the full scope of biochemical sensors and offers a survey of the principles, design and applications of the most popular types of biosensing devices. It is presented in 19 chapters, written by 20 distinguished scientists as well as their co-workers. The topics include the design of signal transducers, signal tags and signal amplification strategies, the structure of biosensing interfaces with new biorecognition elements such as aptamers and DNAzymes, and different newly emerging nanomaterials such as Au nanoclusters, carbon nitride, silicon, upconversion nanoparticles and two-dimensional materials, and the applications in wearable detections, biofuel cells, biomarker analyses, bioimaging, single cell analysis and in vivo sensing.By discussing recent advances, it is hoped this book will bridge the common gap between research literature and standard textbooks. Research into biochemical sensors and their biomedical applications is proceeding in a number of exciting directions, as reflected by the content. This book is published in honor of the 90th birthday of Professor Shaojun Dong, who performed many pioneering studies on modified electrodes and biochemical sensors.




Smart Sensor Systems


Book Description

With contributions from an internationally-renowned group of experts, this book uses a multidisciplinary approach to review recent developments in the field of smart sensor systems, covering important system and design aspects. It examines topics over the whole range of sensor technology from the theory and constraints of basic elements, physics and electronics, up to the level of application-orientated issues. Developed as a complementary volume to ‘Smart Sensor Systems’ (Wiley 2008), which introduces the basics of smart sensor systems, this volume focuses on emerging sensing technologies and applications, including: State-of-the-art techniques for designing smart sensors and smart sensor systems, including measurement techniques at system level, such as dynamic error correction, calibration, self-calibration and trimming. Circuit design for sensor systems, such as the design of precision instrumentation amplifiers. Impedance sensors, and the associated measurement techniques and electronics, that measure electrical characteristics to derive physical and biomedical parameters, such as blood viscosity or growth of micro-organisms. Complete sensor systems-on-a-chip, such as CMOS optical imagers and microarrays for DNA detection, and the associated circuit and micro-fabrication techniques. Vibratory gyroscopes and the associated electronics, employing mechanical and electrical signal amplification to enable low-power angular-rate sensing. Implantable smart sensors for neural interfacing in bio-medical applications. Smart combinations of energy harvesters and energy-storage devices for autonomous wireless sensors. Smart Sensor Systems: Emerging Technologies and Applications will greatly benefit final-year undergraduate and postgraduate students in the areas of electrical, mechanical and chemical engineering, and physics. Professional engineers and researchers in the microelectronics industry, including microsystem developers, will also find this a thorough and useful volume.







Stretchable Electronics


Book Description

Stretchable electronics is a dynamic field of research with the potential to revolutionize human health, robotics, cameras, energy storage, and even building construction. Electronics with rubber-like form factors can integrate with irregularly shaped moving substances in a seamless manner; electronic skins for prosthesis is a good example. The field of stretchable electronics has evolved and matured over the past 20 years, training generations of researchers in the development of novel materials and structures to enable robust integration of miniaturized electronic components. This book presents the work and perspective of this next generation of innovators and disruptors who are driving an exciting phase of diversification and growth in the field.




Handbook of Triboelectric Nanogenerators


Book Description

This handbook comprehensively covers the rapidly evolving field of power generation using triboelectric nanogenerators. Since their emergence in 2012, triboelectric nanogenerators have experienced fast development both in fundamental science aspects and technological innovations resulting in a plethora of outstanding applications and commercial opportunities in e.g. micro-nano energy systems, self-powered sensors, blue energy, and high-voltage power sources. The Handbook of Triboelectric Nanogenerators provides an indispensable overview of the state of the art in the field. It begins with a review of the physical and technological fundamentals and provides detailed coverage of triboelectric nanogenerators for cutting-edge applications from wearable electronics and medical implants to smart home sensing devices and human–machine interfacing. Edited and authored by active researchers in the field, the handbook offers a wealth of information for applied physicists and chemists, as well as materials scientists and engineers. In addition, mechanical and electronic engineers working in the fields of energy scavenging, power sources, and sensor-related application development will benefit greatly from the technical information presented in this groundbreaking reference work.




Energy Harvesting and Storage Devices


Book Description

The book discusses the materials, devices, and methodologies that can be used for energy harvesting including advanced materials, devices, and systems. It describes synthesis and fabrication details of energy storage materials. It explains use of high-energy density thin films for future power systems, flexible and biodegradable energy storage devices, fuel cells and supercapacitors, nanogenerators for self-powered systems, and innovative energy harvesting methodologies. Features: Covers all relevant topics in energy harvesting research and focuses on the current state-of-the-art techniques and materials for this application. Showcases the true potential of the nature in energy harvesting industry by discussing various harvesting mechanisms based on renewable and sustainable energy sources. Explains the recent trends in flexible and wearable energy storage devices that are currently being used in IoT-based smart devices. Overviews of the state-of-the-art research performed on design and development of energy harvesting devices. Highlights the interdisciplinary research efforts needed in energy harvesting and storage devices to transform conceptual ideas to working prototypes. This book is aimed at graduate students and researchers in emerging materials, energy engineering, including harvesting and storage.