Active Vibration Control and Stability Analysis of Flexible Beam Systems


Book Description

This book presents theoretical explorations of several fundamental problems in the dynamics and control of flexible beam systems. By integrating fresh concepts and results to form a systematic approach to control, it establishes a basic theoretical framework. It includes typical control design examples verified using MATLAB simulation, which in turn illustrate the successful practical applications of active vibration control theory for flexible beam systems. The book is primarily intended for researchers and engineers in the control system and mechanical engineering community, offering them a unique resource.




Modeling, Control and Implementation of Smart Structures


Book Description

This book presents an overview over smart structures - its concepts, its active involvement in the vibration control, their applications and the extensive research work done.










Vibration Control of Active Structures


Book Description

My objective in writing this book was to cross the bridge between the structural dynamics and control communities, while providing an overview of the potential of SMART materials for sensing and actuating purposes in active vibration c- trol. I wanted to keep it relatively simple and focused on systems which worked. This resulted in the following: (i) I restricted the text to fundamental concepts and left aside most advanced ones (i.e. robust control) whose usefulness had not yet clearly been established for the application at hand. (ii) I promoted the use of collocated actuator/sensor pairs whose potential, I thought, was strongly underestimated by the control community. (iii) I emphasized control laws with guaranteed stability for active damping (the wide-ranging applications of the IFF are particularly impressive). (iv) I tried to explain why an accurate pred- tion of the transmission zeros (usually called anti-resonances by the structural dynamicists) is so important in evaluating the performance of a control system. (v) I emphasized the fact that the open-loop zeros are more difficult to predict than the poles, and that they could be strongly influenced by the model trun- tion (high frequency dynamics) or by local effects (such as membrane strains in piezoelectric shells), especially for nearly collocated distributed actuator/sensor pairs; this effect alone explains many disappointments in active control systems.




Dynamic Modeling and Active Vibration Control of Structures


Book Description

This book describes the active vibration control techniques which have been developed to suppress excessive vibrations of structures. It covers the fundamental principles of active control methods and their applications and shows how active vibration control techniques have replaced traditional passive vibration control. The book includes coverage of dynamic modeling, control design, sensing methodology, actuator mechanism and electronic circuit design, and the implementation of control algorithms via digital controllers. An in-depth approach has been taken to describe the modeling of structures for control design, the development of control algorithms suitable for structural control, and the implementation of control algorithms by means of Simulink block diagrams or C language. Details of currently available actuators and sensors and electronic circuits for signal conditioning and filtering have been provided based on the most recent advances in the field. The book is used as a textbook for students and a reference for researchers who are interested in studying cutting-edge technology. It will be a valuable resource for academic and industrial researchers and professionals involved in the design and manufacture of active vibration controllers for structures in a wide variety of fields and industries including the automotive, rail, aerospace, and civil engineering sectors.




Proceedings of Mechanical Engineering Research Day 2017


Book Description

This e-book is a compilation of papers presented at the Mechanical Engineering Research Day 2017 (MERD'17) - Melaka, Malaysia on 30 March 2017.