High-Order Models in Semantic Image Segmentation


Book Description

High-Order Models in Semantic Image Segmentation reviews recent developments in optimization-based methods for image segmentation, presenting several geometric and mathematical models that underlie a broad class of recent segmentation techniques. Focusing on impactful algorithms in the computer vision community in the last 10 years, the book includes sections on graph-theoretic and continuous relaxation techniques, which can compute globally optimal solutions for many problems. The book provides a practical and accessible introduction to these state-of -the-art segmentation techniques that is ideal for academics, industry researchers, and graduate students in computer vision, machine learning and medical imaging. Gives an intuitive and conceptual understanding of this mathematically involved subject by using a large number of graphical illustrations Provides the right amount of knowledge to apply sophisticated techniques for a wide range of new applications Contains numerous tables that compare different algorithms, facilitating the appropriate choice of algorithm for the intended application Presents an array of practical applications in computer vision and medical imaging Includes code for many of the algorithms that is available on the book's companion website




Semantic Image Segmentation


Book Description

Semantic image segmentation (SiS) plays a fundamental role towards a general understanding of the image content and context, in a broad variety of computer vision applications, thus providing key information for the global understanding of an image.This monograph summarizes two decades of research in the field of SiS, where a literature review of solutions starting from early historical methods is proposed, followed by an overview of more recent deep learning methods, including the latest trend of using transformers.The publication is complemented by presenting particular cases of the weak supervision and side machine learning techniques that can be used to improve the semantic segmentation, such as curriculum, incremental or self-supervised learning. State-of-the-art SiS models rely on a large amount of annotated samples, which are more expensive to obtain than labels for tasks such as image classification. Since unlabeled data is significantly cheaper to obtain, it is not surprising that Unsupervised Domain Adaptation (UDA) reached a broad success within the semantic segmentation community. Therefore, a second core contribution of this monograph is to summarize five years of a rapidly growing field, Domain Adaptation for Semantic Image Segmentation (DASiS), which embraces the importance of semantic segmentation itself and a critical need of adapting segmentation models to new environments. In addition to providing a comprehensive survey on DASiS techniques, newer trends such as multi-domain learning, domain generalization, domain incremental learning, test-time adaptation and source-free domain adaptation are also presented. The publication concludes by describing datasets and benchmarks most widely used in SiS and DASiS and briefly discusses related tasks such as instance and panoptic image segmentation, as well as applications such as medical image segmentation.This monograph should provide researchers across academia and industry with a comprehensive reference guide, and will help them in fostering new research directions in the field.




Practical Machine Learning for Computer Vision


Book Description

This practical book shows you how to employ machine learning models to extract information from images. ML engineers and data scientists will learn how to solve a variety of image problems including classification, object detection, autoencoders, image generation, counting, and captioning with proven ML techniques. This book provides a great introduction to end-to-end deep learning: dataset creation, data preprocessing, model design, model training, evaluation, deployment, and interpretability. Google engineers Valliappa Lakshmanan, Martin Görner, and Ryan Gillard show you how to develop accurate and explainable computer vision ML models and put them into large-scale production using robust ML architecture in a flexible and maintainable way. You'll learn how to design, train, evaluate, and predict with models written in TensorFlow or Keras. You'll learn how to: Design ML architecture for computer vision tasks Select a model (such as ResNet, SqueezeNet, or EfficientNet) appropriate to your task Create an end-to-end ML pipeline to train, evaluate, deploy, and explain your model Preprocess images for data augmentation and to support learnability Incorporate explainability and responsible AI best practices Deploy image models as web services or on edge devices Monitor and manage ML models




Deep Learning for Computer Vision


Book Description

Learn how to model and train advanced neural networks to implement a variety of Computer Vision tasks Key Features Train different kinds of deep learning model from scratch to solve specific problems in Computer Vision Combine the power of Python, Keras, and TensorFlow to build deep learning models for object detection, image classification, similarity learning, image captioning, and more Includes tips on optimizing and improving the performance of your models under various constraints Book Description Deep learning has shown its power in several application areas of Artificial Intelligence, especially in Computer Vision. Computer Vision is the science of understanding and manipulating images, and finds enormous applications in the areas of robotics, automation, and so on. This book will also show you, with practical examples, how to develop Computer Vision applications by leveraging the power of deep learning. In this book, you will learn different techniques related to object classification, object detection, image segmentation, captioning, image generation, face analysis, and more. You will also explore their applications using popular Python libraries such as TensorFlow and Keras. This book will help you master state-of-the-art, deep learning algorithms and their implementation. What you will learn Set up an environment for deep learning with Python, TensorFlow, and Keras Define and train a model for image and video classification Use features from a pre-trained Convolutional Neural Network model for image retrieval Understand and implement object detection using the real-world Pedestrian Detection scenario Learn about various problems in image captioning and how to overcome them by training images and text together Implement similarity matching and train a model for face recognition Understand the concept of generative models and use them for image generation Deploy your deep learning models and optimize them for high performance Who this book is for This book is targeted at data scientists and Computer Vision practitioners who wish to apply the concepts of Deep Learning to overcome any problem related to Computer Vision. A basic knowledge of programming in Python—and some understanding of machine learning concepts—is required to get the best out of this book.




Handbook of Deep Learning Applications


Book Description

This book presents a broad range of deep-learning applications related to vision, natural language processing, gene expression, arbitrary object recognition, driverless cars, semantic image segmentation, deep visual residual abstraction, brain–computer interfaces, big data processing, hierarchical deep learning networks as game-playing artefacts using regret matching, and building GPU-accelerated deep learning frameworks. Deep learning, an advanced level of machine learning technique that combines class of learning algorithms with the use of many layers of nonlinear units, has gained considerable attention in recent times. Unlike other books on the market, this volume addresses the challenges of deep learning implementation, computation time, and the complexity of reasoning and modeling different type of data. As such, it is a valuable and comprehensive resource for engineers, researchers, graduate students and Ph.D. scholars.




Global-context Refinement for Semantic Image Segmentation


Book Description

Convolutional neural nets have been applied to the task of semantic image segmentation and surpassed previous methods. But even state-of-the-art systems fail on many portions of modern segmentation datasets. We observe that these failures are not random, but in most cases systematic and partially predictable. In particular, the confusion of a segmentation model is mostly stable. We propose compact descriptors of classifier behavior and of visual scene type. These descriptors can be applied in a Bayesian framework to reason about the reliability of predictions returned by a semantic segmentation model, and to correct mistakes in those results contingent on the ability to characterize images at the scene level. We demonstrate, using a competitive semantic segmentation model and several challenging datasets, that the upper bound of this approach is a great improvement in accuracy. The future work we describe has the potential to yield flexible and broad-ranging improvements to deep scene understanding and similar classification problems.




Computer Vision Applications


Book Description

This book constitutes the refereed proceedings of the third Workshop on Computer Vision Applications, WCVA 2018, held in Conjunction with ICVGIP 2018, in Hyderabad, India, in December 2018. The 10 revised full papers presented were carefully reviewed and selected from 32 submissions. The papers focus on computer vision; industrial applications; medical applications; and social applications.




2017 International Conference on Intelligent Sustainable Systems (ICISS)


Book Description

Sustainable Systems 2017 will provide an outstanding international forum for scientists from all over the world to share ideas and achievements in the theory and practice of all areas of inventive systems which includes artificial intelligence, automation systems, computing systems, electronics systems, electrical and informative systems etc Presentations should highlight computing methodologies as a concept that com bines theo retical research and applications in auto ma tion, information and computing technologies All aspects of inventive systems are of interest theory, algorithms, tools, applications, etc







Machine Learning, Deep Learning and Computational Intelligence for Wireless Communication


Book Description

This book is a collection of best selected research papers presented at the Conference on Machine Learning, Deep Learning and Computational Intelligence for Wireless Communication (MDCWC 2020) held during October 22nd to 24th 2020, at the Department of Electronics and Communication Engineering, National Institute of Technology Tiruchirappalli, India. The presented papers are grouped under the following topics (a) Machine Learning, Deep learning and Computational intelligence algorithms (b)Wireless communication systems and (c) Mobile data applications and are included in the book. The topics include the latest research and results in the areas of network prediction, traffic classification, call detail record mining, mobile health care, mobile pattern recognition, natural language processing, automatic speech processing, mobility analysis, indoor localization, wireless sensor networks (WSN), energy minimization, routing, scheduling, resource allocation, multiple access, power control, malware detection, cyber security, flooding attacks detection, mobile apps sniffing, MIMO detection, signal detection in MIMO-OFDM, modulation recognition, channel estimation, MIMO nonlinear equalization, super-resolution channel and direction-of-arrival estimation. The book is a rich reference material for academia and industry.