Semantic Labeling of Places with Mobile Robots


Book Description

During the last years there has been an increasing interest in the area of service robots. Under this category we find robots working in tasks such as elderly care, guiding, office and domestic assistance, inspection, and many more. Service robots usually work in indoor environments designed for humans, with offices and houses being some of the most typical examples. These environments are typically divided into places with different functionalities like corridors, rooms or doorways. The ability to learn such semantic categories from sensor data enables a mobile robot to extend its representation of the environment, and to improve its capabilities. As an example, natural language terms like corridor or room can be used to indicate the position of the robot in a more intuitive way when communicating with humans. This book presents several approaches to enable a mobile robot to categorize places in indoor environments. The categories are indicated by terms which represent the different regions in these environments. The objective of this work is to enable mobile robots to perceive the spatial divisions in indoor environments in a similar way as people do. This is an interesting step forward to the problem of moving the perception of robots closer to the perception of humans. Many approaches introduced in this book come from the area of pattern recognition and classification. The applied methods have been adapted to solve the specific problem of place recognition. In this regard, this work is a useful reference to students and researchers who want to introduce classification techniques to help solve similar problems in mobile robotics.




Field and Service Robotics


Book Description

Robotics is undergoing a major transformation in scope and dimension. From a largely dominant industrial focus, robotics is rapidly expanding into human en- ronments and vigorously engaged in its new challenges. Interacting with, assi- ing, serving, and exploring with humans, the emerging robots will increasingly touch people and their lives. Beyond its impact on physical robots, the body of knowledge robotics has p- duced is revealing a much wider range of applications reaching across diverse research areas and scientific disciplines, such as: biomechanics, haptics, neuros- ences, virtual simulation, animation, surgery, and sensor networks among others. In return, the challenges of the new emerging areas are proving an abundant source of stimulation and insights for the field of robotics. It is indeed at the int- section of disciplines that the most striking advances happen. The Springer Tracts in Advanced Robotics (STAR) is devoted to bringing to the research community the latest advances in the robotics field on the basis of their significance and quality. Through a wide and timely dissemination of critical - search developments in robotics, our objective with this series is to promote more exchanges and collaborations among the researchers in the community and c- tribute to further advancements in this rapidly growing field.




Random Finite Sets for Robot Mapping & SLAM


Book Description

The monograph written by John Mullane, Ba-Ngu Vo, Martin Adams and Ba-Tuong Vo is devoted to the field of autonomous robot systems, which have been receiving a great deal of attention by the research community in the latest few years. The contents are focused on the problem of representing the environment and its uncertainty in terms of feature based maps. Random Finite Sets are adopted as the fundamental tool to represent a map, and a general framework is proposed for feature management, data association and state estimation. The approaches are tested in a number of experiments on both ground based and marine based facilities.




Robotic Systems for Handling and Assembly


Book Description

Although parallel robots are known to offer many advantages with respect to accuracy, dynamics, and stiffness, major breakthroughs in industrial applications have not yet taken place. This is due to a knowledge gap preventing fast and precise execution of industrial handling and assembly tasks. This book focuses on the design, modeling, and control of innovative parallel structures as well as the integration of novel machine elements. Special attention is paid to the integration of active components into lightweight links and passive joints. In addition, new control concepts are introduced to minimize structural vibrations. Although the optimization of robot systems itself allows a reduction of cycle times, these can be further decreased by improved path planning, robot programming, and automated assembly planning concepts described by 25 contributions within this book. The content of this volume is subdivided into four main parts dealing with Modeling and Design, System Implementation, Control and Programming as well as Adaptronics and Components. This book is aimed at researchers and postgraduates working in the field of parallel robots as well as practicing engineers dealing with industrial robot development and robotic applications.




Algorithmic Foundations of Robotics IX


Book Description

Robotics is at the cusp of dramatic transformation. Increasingly complex robots with unprecedented autonomy are finding new applications, from medical surgery, to construction, to home services. Against this background, the algorithmic foundations of robotics are becoming more crucial than ever, in order to build robots that are fast, safe, reliable, and adaptive. Algorithms enable robots to perceive, plan, control, and learn. The design and analysis of robot algorithms raise new fundamental questions that span computer science, electrical engineering, mechanical engineering, and mathematics. These algorithms are also finding applications beyond robotics, for example, in modeling molecular motion and creating digital characters for video games and architectural simulation. The Workshop on Algorithmic Foundations of Robotics (WAFR) is a highly selective meeting of leading researchers in the field of robot algorithms. Since its creation in 1994, it has published some of the field’s most important and lasting contributions. This book contains the proceedings of the 9th WAFR, held on December 13-15, 2010 at the National University of Singapore. The 24 papers included in this book span a wide variety of topics from new theoretical insights to novel applications.




Exoskeletons in Rehabilitation Robotics


Book Description

The new technological advances opened widely the application field of robots. Robots are moving from the classical application scenario with structured industrial environments and tedious repetitive tasks to new application environments that require more interaction with the humans. It is in this context that the concept of Wearable Robots (WRs) has emerged. One of the most exciting and challenging aspects in the design of biomechatronics wearable robots is that the human takes a place in the design, this fact imposes several restrictions and requirements in the design of this sort of devices. The key distinctive aspect in wearable robots is their intrinsic dual cognitive and physical interaction with humans. The key role of a robot in a physical human–robot interaction (pHRI) is the generation of supplementary forces to empower and overcome human physical limits. The crucial role of a cognitive human–robot interaction (cHRI) is to make the human aware of the possibilities of the robot while allowing them to maintain control of the robot at all times. This book gives a general overview of the robotics exoskeletons and introduces the reader to this robotic field. Moreover, it describes the development of an upper limb exoskeleton for tremor suppression in order to illustrate the influence of a specific application in the designs decisions.




Handbook of Big Geospatial Data


Book Description

This handbook covers a wide range of topics related to the collection, processing, analysis, and use of geospatial data in their various forms. This handbook provides an overview of how spatial computing technologies for big data can be organized and implemented to solve real-world problems. Diverse subdomains ranging from indoor mapping and navigation over trajectory computing to earth observation from space, are also present in this handbook. It combines fundamental contributions focusing on spatio-textual analysis, uncertain databases, and spatial statistics with application examples such as road network detection or colocation detection using GPUs. In summary, this handbook gives an essential introduction and overview of the rich field of spatial information science and big geospatial data. It introduces three different perspectives, which together define the field of big geospatial data: a societal, governmental, and governance perspective. It discusses questions of how the acquisition, distribution and exploitation of big geospatial data must be organized both on the scale of companies and countries. A second perspective is a theory-oriented set of contributions on arbitrary spatial data with contributions introducing into the exciting field of spatial statistics or into uncertain databases. A third perspective is taking a very practical perspective to big geospatial data, ranging from chapters that describe how big geospatial data infrastructures can be implemented and how specific applications can be implemented on top of big geospatial data. This would include for example, research in historic map data, road network extraction, damage estimation from remote sensing imagery, or the analysis of spatio-textual collections and social media. This multi-disciplinary approach makes the book unique. This handbook can be used as a reference for undergraduate students, graduate students and researchers focused on big geospatial data. Professionals can use this book, as well as practitioners facing big collections of geospatial data.




Robotics Research


Book Description

This volume contains 50 papers presented at the 12th International Symposium of Robotics Research, which took place October 2005 in San Francisco, CA. Coverage includes: physical human-robot interaction, humanoids, mechanisms and design, simultaneous localization and mapping, field robots, robotic vision, robot design and control, underwater robotics, learning and adaptive behavior, networked robotics, and interfaces and interaction.




Self-Organizing Robots


Book Description

It is man’s ongoing hope that a machine could somehow adapt to its environment by reorganizing itself. This is what the notion of self-organizing robots is based on. The theme of this book is to examine the feasibility of creating such robots within the limitations of current mechanical engineering. The topics comprise the following aspects of such a pursuit: the philosophy of design of self-organizing mechanical systems; self-organization in biological systems; the history of self-organizing mechanical systems; a case study of a self-assembling/self-repairing system as an autonomous distributed system; a self-organizing robot that can create its own shape and robotic motion; implementation and instrumentation of self-organizing robots; and the future of self-organizing robots. All topics are illustrated with many up-to-date examples, including those from the authors’ own work. The book does not require advanced knowledge of mathematics to be understood, and will be of great benefit to students in the robotics discipline, including in the areas of mechanics, control, electronics, and computer science. It is also an important source for researchers who wish to investigate the field of robotics or who have an interest in the application of self-organizing phenomena.




Towards Service Robots for Everyday Environments


Book Description

People have dreamed of machines, which would free them from unpleasant, dull, dirty and dangerous tasks and work for them as servants, for centuries if not millennia. Service robots seem to finally let these dreams come true. But where are all these robots that eventually serve us all day long, day for day? A few service robots have entered the market: domestic and professional cleaning robots, lawnmowers, milking robots, or entertainment robots. Some of these robots look more like toys or gadgets rather than real robots. But where is the rest? This is a question, which is asked not only by customers, but also by service providers, care organizations, politicians, and funding agencies. The answer is not very satisfying. Today’s service robots have their problems operating in everyday environments. This is by far more challenging than operating an industrial robot behind a fence. There is a comprehensive list of technical and scientific problems, which still need to be solved. To advance the state of the art in service robotics towards robots, which are capable of operating in an everyday environment, was the major objective of the DESIRE project (Deutsche Service Robotik Initiative – Germany Service Robotics Initiative) funded by the German Ministry of Education and Research (BMBF) under grant no. 01IME01A. This book offers a sample of the results achieved in DESIRE.