Semi-Simple Lie Algebras and Their Representations


Book Description

Designed to acquaint students of particle physiME already familiar with SU(2) and SU(3) with techniques applicable to all simple Lie algebras, this text is especially suited to the study of grand unification theories. Author Robert N. Cahn, who is affiliated with the Lawrence Berkeley National Laboratory in Berkeley, California, has provided a new preface for this edition. Subjects include the killing form, the structure of simple Lie algebras and their representations, simple roots and the Cartan matrix, the classical Lie algebras, and the exceptional Lie algebras. Additional topiME include Casimir operators and Freudenthal's formula, the Weyl group, Weyl's dimension formula, reducing product representations, subalgebras, and branching rules. 1984 edition.




Lie Groups, Lie Algebras, and Representations


Book Description

This textbook treats Lie groups, Lie algebras and their representations in an elementary but fully rigorous fashion requiring minimal prerequisites. In particular, the theory of matrix Lie groups and their Lie algebras is developed using only linear algebra, and more motivation and intuition for proofs is provided than in most classic texts on the subject. In addition to its accessible treatment of the basic theory of Lie groups and Lie algebras, the book is also noteworthy for including: a treatment of the Baker–Campbell–Hausdorff formula and its use in place of the Frobenius theorem to establish deeper results about the relationship between Lie groups and Lie algebras motivation for the machinery of roots, weights and the Weyl group via a concrete and detailed exposition of the representation theory of sl(3;C) an unconventional definition of semisimplicity that allows for a rapid development of the structure theory of semisimple Lie algebras a self-contained construction of the representations of compact groups, independent of Lie-algebraic arguments The second edition of Lie Groups, Lie Algebras, and Representations contains many substantial improvements and additions, among them: an entirely new part devoted to the structure and representation theory of compact Lie groups; a complete derivation of the main properties of root systems; the construction of finite-dimensional representations of semisimple Lie algebras has been elaborated; a treatment of universal enveloping algebras, including a proof of the Poincaré–Birkhoff–Witt theorem and the existence of Verma modules; complete proofs of the Weyl character formula, the Weyl dimension formula and the Kostant multiplicity formula. Review of the first edition: This is an excellent book. It deserves to, and undoubtedly will, become the standard text for early graduate courses in Lie group theory ... an important addition to the textbook literature ... it is highly recommended. — The Mathematical Gazette




LECTURES ON REAL SEMISIMPLE LIE ALGEBRAS AND THEIR REPRESENTATIONS


Book Description

In 1914, E. Cartan posed the problem to find all irreducible real linear Lie algebras. An updated exposition of his work was given by Iwahori (1959). This theory reduces the classification of irreducible real representations of a real Lie algebra to a description of the so-called self-conjugate irreducible complex representations of this algebra and to the calculation of an invariant of such a representation (with values +1 or -1) which is called the index. Moreover, these two problems were reduced to the case when the Lie algebra is simple and the highest weight of its irreducible complex representation is fundamental. A complete case-by-case classification for all simple real Lie algebras was given (without proof) in the tables of Tits (1967). But actually a general solution of these problems is contained in a paper of Karpelevich (1955) (written in Russian and not widely known), where inclusions between real forms induced by a complex representation were studied. We begin with a simplified (and somewhat extended and corrected) exposition of the main part of this paper and relate it to the theory of Cartan-Iwahori. We conclude with some tables, where an involution of the Dynkin diagram which allows us to find self-conjugate representations is described and explicit formulas for the index are given. In a short addendum, written by J. v. Silhan, this involution is interpreted in terms of the Satake diagram. The book is aimed at students in Lie groups, Lie algebras and their representations, as well as researchers in any field where these theories are used. The reader is supposed to know the classical theory of complex semisimple Lie algebras and their finite dimensional representation; the main facts are presented without proofs in Section 1. In the remaining sections the exposition is made with detailed proofs, including the correspondence between real forms and involutive automorphisms, the Cartan decompositions and the con ...




Introduction to Lie Algebras and Representation Theory


Book Description

This book is designed to introduce the reader to the theory of semisimple Lie algebras over an algebraically closed field of characteristic 0, with emphasis on representations. A good knowledge of linear algebra (including eigenvalues, bilinear forms, euclidean spaces, and tensor products of vector spaces) is presupposed, as well as some acquaintance with the methods of abstract algebra. The first four chapters might well be read by a bright undergraduate; however, the remaining three chapters are admittedly a little more demanding. Besides being useful in many parts of mathematics and physics, the theory of semisimple Lie algebras is inherently attractive, combining as it does a certain amount of depth and a satisfying degree of completeness in its basic results. Since Jacobson's book appeared a decade ago, improvements have been made even in the classical parts of the theory. I have tried to incor porate some of them here and to provide easier access to the subject for non-specialists. For the specialist, the following features should be noted: (I) The Jordan-Chevalley decomposition of linear transformations is emphasized, with "toral" subalgebras replacing the more traditional Cartan subalgebras in the semisimple case. (2) The conjugacy theorem for Cartan subalgebras is proved (following D. J. Winter and G. D. Mostow) by elementary Lie algebra methods, avoiding the use of algebraic geometry.




Representations of Semisimple Lie Algebras in the BGG Category O


Book Description

This is the first textbook treatment of work leading to the landmark 1979 Kazhdan–Lusztig Conjecture on characters of simple highest weight modules for a semisimple Lie algebra g g over C C. The setting is the module category O O introduced by Bernstein–Gelfand–Gelfand, which includes all highest weight modules for g g such as Verma modules and finite dimensional simple modules. Analogues of this category have become influential in many areas of representation theory. Part I can be used as a text for independent study or for a mid-level one semester graduate course; it includes exercises and examples. The main prerequisite is familiarity with the structure theory of g g. Basic techniques in category O O such as BGG Reciprocity and Jantzen's translation functors are developed, culminating in an overview of the proof of the Kazhdan–Lusztig Conjecture (due to Beilinson–Bernstein and Brylinski–Kashiwara). The full proof however is beyond the scope of this book, requiring deep geometric methods: D D-modules and perverse sheaves on the flag variety. Part II introduces closely related topics important in current research: parabolic category O O, projective functors, tilting modules, twisting and completion functors, and Koszul duality theorem of Beilinson–Ginzburg–Soergel.




Lie Groups, Lie Algebras, and Their Representations


Book Description

This book has grown out of a set of lecture notes I had prepared for a course on Lie groups in 1966. When I lectured again on the subject in 1972, I revised the notes substantially. It is the revised version that is now appearing in book form. The theory of Lie groups plays a fundamental role in many areas of mathematics. There are a number of books on the subject currently available -most notably those of Chevalley, Jacobson, and Bourbaki-which present various aspects of the theory in great depth. However, 1 feei there is a need for a single book in English which develops both the algebraic and analytic aspects of the theory and which goes into the representation theory of semi simple Lie groups and Lie algebras in detail. This book is an attempt to fiii this need. It is my hope that this book will introduce the aspiring graduate student as well as the nonspecialist mathematician to the fundamental themes of the subject. I have made no attempt to discuss infinite-dimensional representations. This is a very active field, and a proper treatment of it would require another volume (if not more) of this size. However, the reader who wants to take up this theory will find that this book prepares him reasonably well for that task.




Complex Semisimple Lie Algebras


Book Description

These notes are a record of a course given in Algiers from lOth to 21st May, 1965. Their contents are as follows. The first two chapters are a summary, without proofs, of the general properties of nilpotent, solvable, and semisimple Lie algebras. These are well-known results, for which the reader can refer to, for example, Chapter I of Bourbaki or my Harvard notes. The theory of complex semisimple algebras occupies Chapters III and IV. The proofs of the main theorems are essentially complete; however, I have also found it useful to mention some complementary results without proof. These are indicated by an asterisk, and the proofs can be found in Bourbaki, Groupes et Algebres de Lie, Paris, Hermann, 1960-1975, Chapters IV-VIII. A final chapter shows, without proof, how to pass from Lie algebras to Lie groups (complex-and also compact). It is just an introduction, aimed at guiding the reader towards the topology of Lie groups and the theory of algebraic groups. I am happy to thank MM. Pierre Gigord and Daniel Lehmann, who wrote up a first draft of these notes, and also Mlle. Franr,:oise Pecha who was responsible for the typing of the manuscript.




Lie Groups, Lie Algebras, and Representations


Book Description

This book provides an introduction to Lie groups, Lie algebras, and repre sentation theory, aimed at graduate students in mathematics and physics. Although there are already several excellent books that cover many of the same topics, this book has two distinctive features that I hope will make it a useful addition to the literature. First, it treats Lie groups (not just Lie alge bras) in a way that minimizes the amount of manifold theory needed. Thus, I neither assume a prior course on differentiable manifolds nor provide a con densed such course in the beginning chapters. Second, this book provides a gentle introduction to the machinery of semi simple groups and Lie algebras by treating the representation theory of SU(2) and SU(3) in detail before going to the general case. This allows the reader to see roots, weights, and the Weyl group "in action" in simple cases before confronting the general theory. The standard books on Lie theory begin immediately with the general case: a smooth manifold that is also a group. The Lie algebra is then defined as the space of left-invariant vector fields and the exponential mapping is defined in terms of the flow along such vector fields. This approach is undoubtedly the right one in the long run, but it is rather abstract for a reader encountering such things for the first time.




Deformation Theory of Algebras and Structures and Applications


Book Description

This volume is a result of a meeting which took place in June 1986 at 'll Ciocco" in Italy entitled 'Deformation theory of algebras and structures and applications'. It appears somewhat later than is perhaps desirable for a volume resulting from a summer school. In return it contains a good many results which were not yet available at the time of the meeting. In particular it is now abundantly clear that the Deformation theory of algebras is indeed central to the whole philosophy of deformations/perturbations/stability. This is one of the main results of the 254 page paper below (practically a book in itself) by Gerstenhaber and Shack entitled "Algebraic cohomology and defor mation theory". Two of the main philosphical-methodological pillars on which deformation theory rests are the fol lowing • (Pure) To study a highly complicated object, it is fruitful to study the ways in which it can arise as a limit of a family of simpler objects: "the unraveling of complicated structures" . • (Applied) If a mathematical model is to be applied to the real world there will usually be such things as coefficients which are imperfectly known. Thus it is important to know how the behaviour of a model changes as it is perturbed (deformed).




Lie Theory


Book Description

* First of three independent, self-contained volumes under the general title, "Lie Theory," featuring original results and survey work from renowned mathematicians. * Contains J. C. Jantzen's "Nilpotent Orbits in Representation Theory," and K.-H. Neeb's "Infinite Dimensional Groups and their Representations." * Comprehensive treatments of the relevant geometry of orbits in Lie algebras, or their duals, and the correspondence to representations. * Should benefit graduate students and researchers in mathematics and mathematical physics.