Semiconducting Lead Chalcogenides


Book Description

The last decade has seen radical changes in our understand ing of the physical properties of semiconductors. It has been es tablished that the energy spectrum of electrons is much more complex than had originally been predicted: in many cases, there are several energy bands with different parameters. It has been found that the effective carrier mass, which had been assumed to be constant for a given material, depends on the carrier energy, temperature, pressure, and even the nature and number of de fects. Our understanding of the mechanism of the motion and scat tering of carriers, recombination mechanisms, and interaction with electromagnetic radiation has also changed. New applications of semiconducting materials have been discovered and old ones have been extended; these include high-power devices, devices sensitive to infrared radiation, and lasers. The visible evidence of the pro gress is in the form of hundreds of publications, some of which re port extremely refined and comprehensive investigations of semi conducting materials. A scientist concerned with investigations or applications of semiconducting materials or devices cannot ignore these publica tions because of the possibility of repeating work already done or of committing serious error. s. On the other hand, a beginner would require years to obtain a thorough understanding of the literature in his own narrow subject, and in many cases this process would be like the chase of a tortoise by Achilles in the paradox of Zeno of Elea (495-435 B. C'>.







Semiconducting Lead Chalcogenides


Book Description

The last decade has seen radical changes in our understand ing of the physical properties of semiconductors. It has been es tablished that the energy spectrum of electrons is much more complex than had originally been predicted: in many cases, there are several energy bands with different parameters. It has been found that the effective carrier mass, which had been assumed to be constant for a given material, depends on the carrier energy, temperature, pressure, and even the nature and number of de fects. Our understanding of the mechanism of the motion and scat tering of carriers, recombination mechanisms, and interaction with electromagnetic radiation has also changed. New applications of semiconducting materials have been discovered and old ones have been extended; these include high-power devices, devices sensitive to infrared radiation, and lasers. The visible evidence of the pro gress is in the form of hundreds of publications, some of which re port extremely refined and comprehensive investigations of semi conducting materials. A scientist concerned with investigations or applications of semiconducting materials or devices cannot ignore these publica tions because of the possibility of repeating work already done or of committing serious error. s. On the other hand, a beginner would require years to obtain a thorough understanding of the literature in his own narrow subject, and in many cases this process would be like the chase of a tortoise by Achilles in the paradox of Zeno of Elea (495-435 B. C'>.




Lead Chalcogenides


Book Description

Lead Chalcogenides remain one of the basic materials of modern infrared optoelectronics. This volume presents the [roperties of lead chalcogenides, including the basic physical features, the bulk and epitaxial growth technique, and the 2-D physics of lead chalcogenide-based structures. In addition, the theoretical appraoches for band structure and impurity state calculations are reviewed.




Lead Chalcogenides


Book Description

Lead Chalcogenides remain one of the basic materials of modern infrared optoelectronics. This volume presents the properties of lead chalcogenides, including the basic physical features, the bulk and epitaxial growth technique, and the 2-D physics of lead chalcogenide-based structures. In addition, the theoretical appraoches for band structure and impurity state calculations are reviewed.







High Temperature Transport Properties of Lead Chalcogenides and Their Alloys


Book Description

This thesis describes a series of experimental studies of lead chalcogenide thermoelectric semiconductors, mainly PbSe. Focusing on a well-studied semiconductor and reporting good but not extraordinary zT, this thesis distinguishes itself by answering the following questions that haven't been answered: What represents the thermoelectric performance of PbSe? Where does the high zT come from? How (and how much) can we make it better? For the first question, samples were made with highest quality. Each transport property was carefully measured, cross-verified and compared with both historical and contemporary report to overturn commonly believed underestimation of zT. For n- and p-type PbSe zT at 850 K can be 1.1 and 1.0, respectively. For the second question, a systematic approach of quality factor B was used. In n-type PbSe zT is benefited from its high-quality conduction band that combines good degeneracy, low band mass and low deformation potential, whereas zT of p-type is boosted when two mediocre valence bands converge (in band edge energy). In both cases the thermal conductivity from PbSe lattice is inherently low. For the third question, the use of solid solution lead chalcogenide alloys was first evaluated. Simple criteria were proposed to help quickly evaluate the potential of improving zT by introducing atomic disorder. For both PbTe1-xSex and PbSe1-xSx, the impacts in electron and phonon transport compensate each other. Thus, zT in each case was roughly the average of two binary compounds. In p-type Pb1-xSrxSe alloys an improvement of zT from 1.1 to 1.5 at 900 K was achieved, due to the band engineering effect that moves the two valence bands closer in energy. To date, making n-type PbSe better hasn't been accomplished, but possible strategy is discussed.







Applications of Chalcogenides: S, Se, and Te


Book Description

This book introduces readers to a wide range of applications for elements in Group 16 of the periodic table, such as, optical fibers for communication and sensing, X-ray imaging, electrochemical sensors, data storage devices, biomedical applications, photovoltaics and IR detectors, the rationale for these uses, the future scope of their applications, and expected improvements to existing technologies. Following an introductory section, the book is broadly divided into three parts—dealing with Sulfur, Selenium, and Tellurium. The sections cover the basic structure of the elements and their compounds in bulk and nanostructured forms; properties that make these useful for various applications, followed by applications and commercial products. As the global technology revolution necessitates the search for new materials and more efficient devices in the electronics and semiconductor industry, Applications of Chalcogenides: S, Se, and Te is an ideal book for a wide range of readers in industry, government and academic research facilities looking beyond silicon for materials used in the electronic and optoelectronic industry as well as biomedical applications.




Chalcogenide


Book Description

Chalcogenide: From 3D to 2D and Beyond reviews graphene-like 2D chalcogenide systems that include topological insulators, interesting thermoelectric structures, and structures that exhibit a host of spin phenomena that are unique to 2D and lower-dimensional geometries. The book describes state-of-the-art materials in growth and fabrication, magnetic, electronic and optical characterization, as well as the experimental and theoretical aspects of this family of materials. Bulk chalcogenides, chalcogenide films, their heterostructures and low-dimensional chalcogenide-based quantum structures are discussed. Particular attention is paid to findings that are relevant to the continued search for new physical phenomena and new functionalities. Finally, the book covers the enormous opportunities that have emerged as it has become possible to achieve lower-dimensional chalcogenide structures by epitaxial techniques. Provides readers with foundational information on the materials growth, fabrication, magnetic, electronic and optical characterization of chalcogenide materials Discusses not only bulk chalcogenides and chalcogenide thin films, but also two-dimensional chalcogenide materials systems Reviews the most important applications in optoelectronics, photovoltaics and thermoelectrics