Book Description
Publisher Description
Author : Omar Manasreh
Publisher : McGraw-Hill Companies
Page : 586 pages
File Size : 46,36 MB
Release : 2005-05-13
Category : Science
ISBN :
Publisher Description
Author : Omar Manasreh
Publisher : McGraw Hill Professional
Page : 578 pages
File Size : 43,63 MB
Release : 2005-05-13
Category : Technology & Engineering
ISBN : 0071469680
Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. This comprehensive text is aimed at graduate level students and researchers, breaking down the complexities of fabrication, use, and maintenance of heterojunctions. Topics include: introduction to quantum mechanics, Potential barriers and wells, electronic energy levels in periodic potentials, tunneling through potential barriers, distribution functions and density of states, optical properties of interband and intersubband transitions, electrical properties, techniques and measurements, growth issues, devices: Detectors and emitters.
Author : Giovanni Agostini
Publisher : Elsevier
Page : 501 pages
File Size : 21,67 MB
Release : 2011-08-11
Category : Science
ISBN : 0080558151
In the last couple of decades, high-performance electronic and optoelectronic devices based on semiconductor heterostructures have been required to obtain increasingly strict and well-defined performances, needing a detailed control, at the atomic level, of the structural composition of the buried interfaces. This goal has been achieved by an improvement of the epitaxial growth techniques and by the parallel use of increasingly sophisticated characterization techniques and of refined theoretical models based on ab initio approaches. This book deals with description of both characterization techniques and theoretical models needed to understand and predict the structural and electronic properties of semiconductor heterostructures and nanostructures. - Comprehensive collection of the most powerful characterization techniques for semiconductor heterostructures and nanostructures - Most of the chapters are authored by scientists that are among the top 10 worldwide in publication ranking of the specific field - Each chapter starts with a didactic introduction on the technique - The second part of each chapter deals with a selection of top examples highlighting the power of the specific technique to analyze the properties of semiconductors
Author : Jyoti Prasad Banerjee
Publisher : CRC Press
Page : 554 pages
File Size : 38,96 MB
Release : 2019-06-11
Category : Science
ISBN : 1482223066
This book is a comprehensive text on the physics of semiconductors and nanostructures for a large spectrum of students at the final undergraduate level studying physics, material science and electronics engineering. It offers introductory and advanced courses on solid state and semiconductor physics on one hand and the physics of low dimensional semiconductor structures on the other in a single text book. Key Features Presents basic concepts of quantum theory, solid state physics, semiconductors, and quantum nanostructures such as quantum well, quantum wire, quantum dot and superlattice In depth description of semiconductor heterojunctions, lattice strain and modulation doping technique Covers transport in nanostructures under an electric and magnetic field with the topics: quantized conductance, Coulomb blockade, and integer and fractional quantum Hall effect Presents the optical processes in nanostructures under a magnetic field Includes illustrative problems with hints for solutions in each chapter Physics of Semiconductors and Nanostructures will be helpful to students initiating PhD work in the field of semiconductor nanostructures and devices. It follows a unique tutorial approach meeting the requirements of students who find learning the concepts difficult and want to study from a physical perspective.
Author : Jyoti Prasad Banerjee
Publisher : CRC Press
Page : 412 pages
File Size : 45,96 MB
Release : 2019-06-11
Category : Science
ISBN : 1482223058
This book is a comprehensive text on the physics of semiconductors and nanostructures for a large spectrum of students at the final undergraduate level studying physics, material science and electronics engineering. It offers introductory and advanced courses on solid state and semiconductor physics on one hand and the physics of low dimensional semiconductor structures on the other in a single text book. Key Features Presents basic concepts of quantum theory, solid state physics, semiconductors, and quantum nanostructures such as quantum well, quantum wire, quantum dot and superlattice In depth description of semiconductor heterojunctions, lattice strain and modulation doping technique Covers transport in nanostructures under an electric and magnetic field with the topics: quantized conductance, Coulomb blockade, and integer and fractional quantum Hall effect Presents the optical processes in nanostructures under a magnetic field Includes illustrative problems with hints for solutions in each chapter Physics of Semiconductors and Nanostructures will be helpful to students initiating PhD work in the field of semiconductor nanostructures and devices. It follows a unique tutorial approach meeting the requirements of students who find learning the concepts difficult and want to study from a physical perspective.
Author : Vasilios N. Stavrou
Publisher : BoD – Books on Demand
Page : 130 pages
File Size : 22,70 MB
Release : 2018-07-25
Category : Science
ISBN : 1789234689
The current book entitled Heterojunctions and Nanostructures is divided into two sections. In Section 1, the chapters are related to topological insulators where their theoretical aspects, their current experiments, and their applications are presented. A few presented topics are, among others, the topological phases of matter, band topology of insulators and also of Weyl semimetals, transport properties of 3D topological insulator quantum wires and the influence of disorder, transport properties of quasi-1D (and 2D) topological surface states, quantum coherence, and topological insulator thin-film Hall bar device. In Section 2, the chapters are related to light devices such as laser diodes and their fabrication techniques. This section includes, among others, topics such as semiconductor quantum nanowire laser diodes, solutions of Schrodinger equation in nanostructures, numerical methods, light-to-electricity conversion devices, photoexcited carrier transportation process in quantum wells and quantum dots, growth mode and characterization of heterostructure of large lattice mismatch, and photoionization cross section.
Author : Fausto Rossi
Publisher : Springer Science & Business Media
Page : 382 pages
File Size : 26,41 MB
Release : 2011-01-13
Category : Technology & Engineering
ISBN : 3642105564
Primary goal of this book is to provide a cohesive description of the vast field of semiconductor quantum devices, with special emphasis on basic quantum-mechanical phenomena governing the electro-optical response of new-generation nanomaterials. The book will cover within a common language different types of optoelectronic nanodevices, including quantum-cascade laser sources and detectors, few-electron/exciton quantum devices, and semiconductor-based quantum logic gates. The distinguishing feature of the present volume is a unified microscopic treatment of quantum-transport and coherent-optics phenomena on ultrasmall space- and time-scales, as well as of their semiclassical counterparts.
Author : M. Balkanski
Publisher : Oxford University Press
Page : 516 pages
File Size : 48,97 MB
Release : 2000-08-31
Category : Science
ISBN : 9780198517405
This textbook covers the basic physics of semiconductors and their applications to practical devices, with emphasis on the basic physical principles upon which these devices operate. Extensive use of figures is made to enhance the clarity of the presentation and to establish contact with the experimental side of the topic. Graduate students and lecturers in semiconductor physics, condensed matter physics, electromagnetic theory, and quantum mechanics will find this a useful textbook and reference work.
Author : Ye Zhou
Publisher : CRC Press
Page : 382 pages
File Size : 22,96 MB
Release : 2021-01-19
Category : Technology & Engineering
ISBN : 1000325717
Optoelectronic Organic-Inorganic Semiconductor Heterojunctions summarizes advances in the development of organic-inorganic semiconductor heterojunctions, points out challenges and possible solutions for material/device design, and evaluates prospects for commercial applications. Introduces the concept and basic mechanism of semiconductor heterojunctions Describes a series of organic-inorganic semiconductor heterojunctions with desirable electrical and optical properties for optoelectronic devices Discusses typical devices such as solar cells, photo-detectors, and optoelectronic memories Outlines the materials and device challenges as well as possible strategies to promote the commercial translation of semiconductor heterojunctions-based optoelectronic devices Aimed at graduate students and researchers working in solid-state materials and electronics, this book offers a comprehensive yet accessible view of the state of the art and future directions.
Author : Dieter Bimberg
Publisher : Springer Science & Business Media
Page : 369 pages
File Size : 23,30 MB
Release : 2008-06-03
Category : Technology & Engineering
ISBN : 3540778993
Reducing the size of a coherently grown semiconductor cluster in all three directions of space to a value below the de Broglie wavelength of a charge carrier leads to complete quantization of the energy levels, density of states, etc. Such “quantum dots” are more similar to giant atoms in a dielectric cage than to classical solids or semiconductors showing a dispersion of energy as a function of wavevector. Their electronic and optical properties depend strongly on their size and shape, i.e. on their geometry. By designing the geometry by controlling the growth of QDs, absolutely novel possibilities for material design leading to novel devices are opened. This multiauthor book written by world-wide recognized leaders of their particular fields and edited by the recipient of the Max-Born Award and Medal 2006 Professor Dieter Bimberg reports on the state of the art of the growing of quantum dots, the theory of self-organised growth, the theory of electronic and excitonic states, optical properties and transport in a variety of materials. It covers the subject from the early work beginning of the 1990s up to 2006. The topics addressed in the book are the focus of research in all leading semiconductor and optoelectronic device laboratories of the world.