Semiconductor Quantum Science and Technology


Book Description

Semiconductor quantum science and technology is exploring the exciting and emerging prospects of integrating quantum functionality on semiconductor platforms to convert current information technology into quantum information technology. The past twenty years have led to incredible advances in this field. This book brings together the leading scientists who present the main achievements and challenges by reviewing and motivating the state-of-the-art at a tutorial level. The key challenges include creating quantum-light sources, quantum information processing via strong light-matter interaction, discovering new quantum materials as well as quasiparticles, and determining new quantum spectroscopic methodologies for superior control of quantum phenomena. As an important step, integration of these solutions on a semiconductor chip is discussed, and outlook for the future of semiconductor quantum science and technology is given. - Leading experts present their vision on semiconductor quantum science and technology - All aspects needed to realize semiconductor quantum science and technology are explained - Quantum semiconductors from overviewed a tutorial introduction to the state-of-the-art




Semiconductor Quantum Science and Technology


Book Description

Semiconductor quantum science and technology is exploring the exciting and emerging prospects of integrating quantum functionality on semiconductor platforms to convert current information technology into quantum information technology. The past twenty years have led to incredible advances in this field. This book brings together the leading scientists who present the main achievements and challenges by reviewing and motivating the state-of-the-art at a tutorial level. The key challenges include creating quantum-light sources, quantum information processing via strong light-matter interaction, discovering new quantum materials as well as quasiparticles, and determining new quantum spectroscopic methodologies for superior control of quantum phenomena. As an important step, integration of these solutions on a semiconductor chip is discussed, and outlook for the future of semiconductor quantum science and technology is given. Leading experts present their vision on semiconductor quantum science and technology All aspects needed to realize semiconductor quantum science and technology are explained Quantum semiconductors from overviewed a tutorial introduction to the state-of-the-art




Modern Semiconductor Quantum Physics


Book Description

Modern Semiconductor Quantum Physics has the following constituents: (1) energy band theory: pseudopotential method (empirical and ab initio); density functional theory; quasi-particles; LCAO method; k.p method; spin-orbit splitting; effect mass and Luttinger parameters; strain effects and deformation potentials; temperature effects. (2) Optical properties: absorption and exciton effect; modulation spectroscopy; photo luminescence and photo luminescence excitation; Raman scattering and polaritons; photoionization. (3) Defects and Impurities: effective mass theory and shallow impurity states; deep state cluster method, super cell method, Green's function method; carrier recombination kinetics; trapping transient measurements; electron spin resonance; electron lattice interaction and lattice relaxation effects; multi-phonon nonradiative recombination; negative U center, DX center and EL2 Defects. (4) Semiconductor surfaces: two dimensional periodicity and surface reconstruction; surface electronic states; photo-electron spectroscopy; LEED, STM and other experimental methods. (5) Low-dimensional structures: Heterojunctions, quantum wells; superlattices, quantum-confined Stark effect and Wannier-Stark ladder effects; resonant tunneling, quantum Hall effect, quantum wires and quantum dots.This book can be used as an advanced textbook on semiconductor physics for graduate students in physics and electrical engineering departments. It is also useful as a research reference for solid state scientists and semiconductor device engineers.




Introductory Quantum Mechanics for Semiconductor Nanotechnology


Book Description

The result of the nano education project run by the Korean Nano Technology Initiative, this has been recommended for use as official textbook by the Korean Nanotechnology Research Society. The author is highly experienced in teaching both physics and engineering in academia and industry, and naturally adopts an interdisciplinary approach here. He is short on formulations but long on applications, allowing students to understand the essential workings of quantum mechanics without spending too much time covering the wide realms of physics. He takes care to provide sufficient technical background and motivation for students to pursue further studies of advanced quantum mechanics and stresses the importance of translating quantum insights into useful and tangible innovations and inventions. As such, this is the only work to cover semiconductor nanotechnology from the perspective of introductory quantum mechanics, with applications including mainstream semiconductor technologies as well as (nano)devices, ranging from photodetectors, laser diodes, and solar cells to transistors and Schottky contacts. Problems are also provided to test the reader's understanding and supplementary material available includes working presentation files, solutions and instructors manuals.




Quantum Dot Lasers


Book Description

The book addresses issues associated with physics and technology of injection lasers based on self-organized quantum dots. Fundamental and technological aspects of quantum dot edge-emitting lasers and VCSELs, their current status and future prospects are summarized and reviewed. Basic principles of QD formation using self-organization phenomena are reviewed. Structural and optical properties of self-organized QDs are considered with a number of examples in different material systems. Recent achievements in controlling the QD properties including the effects of vertical stacking, changing the matrix bandgap and the surface density of QDs are reviewed. The authors focus on the use of self-organized quantum dots in laser structures, fabrication and characterization of edge and surface emitting diode lasers, their properties and optimization with special attention paid to the relationship between structural and electronic properties of QDs and laser characteristics. The threshold and power characteristics of the state-of-the-art QD lasers are demonstrated. Issues related to the long-wavelength (1.3-mm) lasers on a GaAs substrate are also addressed and recent results on InGaAsN-based diode lasers presented for the purpose of comparison.




Technology of Quantum Devices


Book Description

Technology of Quantum Devices offers a multi-disciplinary overview of solid state physics, photonics and semiconductor growth and fabrication. Readers will find up-to-date coverage of compound semiconductors, crystal growth techniques, silicon and compound semiconductor device technology, in addition to intersubband and semiconductor lasers. Recent findings in quantum tunneling transport, quantum well intersubband photodetectors (QWIP) and quantum dot photodetectors (QWDIP) are described, along with a thorough set of sample problems.




Quantum Semiconductor Structures


Book Description

In its original form, this widely acclaimed primer on the fundamentals of quantized semiconductor structures was published as an introductory chapter in Raymond Dingle's edited volume (24) of Semiconductors and Semimetals. Having already been praised by reviewers for its excellent coverage, this material is now available in an updated and expanded "student edition." This work promises to become a standard reference in the field. It covers the basics of electronic states as well as the fundamentals of optical interactions and quantum transport in two-dimensional quantized systems. This revised student edition also includes entirely new sections discussing applications and one-dimensional and zero-dimensional systems. - Available for the first time in a new, expanded version - Provides a concise introduction to the fundamentals and fascinating applications of quantized semiconductor structures




The Materials Science of Semiconductors


Book Description

This book describes semiconductors from a materials science perspective rather than from condensed matter physics or electrical engineering viewpoints. It includes discussion of current approaches to organic materials for electronic devices. It further describes the fundamental aspects of thin film nucleation and growth, and the most common physical and chemical vapor deposition techniques. Examples of the application of the concepts in each chapter to specific problems or situations are included, along with recommended readings and homework problems.




Single Semiconductor Quantum Dots


Book Description

This book reviews recent advances in the field of semiconductor quantum dots via contributions from prominent researchers in the scientific community. Special focus is given to optical, quantum optical, and spin properties of single quantum dots.




Semiconductor Quantum Dots


Book Description

Semiconductor quantum dots represent one of the fields of solid state physics that have experienced the greatest progress in the last decade. Recent years have witnessed the discovery of many striking new aspects of the optical response and electronic transport phenomena. This book surveys this progress in the physics, optical spectroscopy and application-oriented research of semiconductor quantum dots. It focuses especially on excitons, multi-excitons, their dynamical relaxation behaviour and their interactions with the surroundings of a semiconductor quantum dot. Recent developments in fabrication techniques are reviewed and potential applications discussed. This book will serve not only as an introductory textbook for graduate students but also as a concise guide for active researchers.