Semiconductor Quantum Structures for Ultraviolet-to-infrared Multi-band Radiation Detection


Book Description

In this work, multi-band (multi-color) detector structures considering different semiconductor device concepts and architectures are presented. Results on detectors operating in ultraviolet-to-infrared regions (UV-to-IR) are discussed. Multi-band detectors are based on quantum dot (QD) structures; which include quantum-dots-in-a-well (DWELL), tunneling quantum dot infrared photodetectors (T-QDIPs), and bi-layer quantum dot infrared photodetectors (Bi-QDIPs); and homo-/heterojunction interfacial workfunction internal photoemission (HIWIP/HEIWIP) structures. QD-based detectors show multi-color characteristics in mid- and far-infrared (MIR/FIR) regions, where as HIWIP/HEIWIP detectors show responses in UV or near-infrared (NIR) regions, and MIR-to-FIR regions. In DWELL structures, InAs QDs are placed in an InGaAs/GaAs quantum well (QW) to introduce photon induced electronic transitions from energy states in the QD to that in QW, leading to multi-color response peaks. One of the DWELL detectors shows response peaks at




Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors


Book Description

Three-volumes book “Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors” is the first to cover both chemical sensors and biosensors and all types of photodetectors and radiation detectors based on II-VI semiconductors. It contains a comprehensive and detailed analysis of all aspects of the application of II-VI semiconductors in these devices. The second volume “Photodetectors” of a three-volume set, focus on the consideration of all types of optical detectors, including IR detectors, visible and UV photodetectors. This consideration includes both the fundamentals of the operation of detectors and the peculiarities of their manufacture and use. In particular, describes numerous strategies for their fabrication and characterization. An analysis of new trends in development of II-VI semiconductors-based photodetectors such as graphene/HgCdTe-, nanowire- and quantum dot-based photodetectors, as well as solution-processed, multicolor, flexible and self-powered photodetectors, are also given.




Handbook of Self Assembled Semiconductor Nanostructures for Novel Devices in Photonics and Electronics


Book Description

The self-assembled nanostructured materials described in this book offer a number of advantages over conventional material technologies in a wide range of sectors. World leaders in the field of self-organisation of nanostructures review the current status of research and development in the field, and give an account of the formation, properties, and self-organisation of semiconductor nanostructures. Chapters on structural, electronic and optical properties, and devices based on self-organised nanostructures are also included. Future research work on self-assembled nanostructures will connect diverse areas of material science, physics, chemistry, electronics and optoelectronics. This book will provide an excellent starting point for workers entering the field and a useful reference to the nanostructured materials research community. It will be useful to any scientist who is involved in nanotechnology and those wishing to gain a view of what is possible with modern fabrication technology. Mohamed Henini is a Professor of Applied Physics at the University of Nottingham. He has authored and co-authored over 750 papers in international journals and conference proceedings and is the founder of two international conferences. He is the Editor-in-Chief of Microelectronics Journal and has edited three previous Elsevier books. Contributors are world leaders in the field Brings together all the factors which are essential in self-organisation of quantum nanostructures Reviews the current status of research and development in self-organised nanostructured materials Provides a ready source of information on a wide range of topics Useful to any scientist who is involved in nanotechnology Excellent starting point for workers entering the field Serves as an excellent reference manual




UV Solid-State Light Emitters and Detectors


Book Description

Infrared and visible light LEDs and photodetectors have found numerous applications and have become a truly enabling technology. The promise of solid state lighting has invigorated interest in white light LEDs. Ultraviolet LEDs and solar blind photodetectors represent the next frontier in solid state emitters and hold promise for many important applications in biology, medi cine, dentistry, solid state lighting, displays, dense data storage, and semi conductor manufacturing. One of the most important applications is in sys tems for the identification of hazardous biological agents. Compared to UV lamps, UV LEDs have lower power consumption, a longer life, compactness, and sharper spectral lines. UV LEDs can provide a variety of UV spectra and have shape and form factor flexibility and rugged ness. Using conventional phosphors, UV LEDs can generate white light with high CRI and high efficiency. If quantum cutter phosphors are developed, white light generation by UV LEDs might become even more efficient. Advances in semiconductor materials and in improved light extraction techniques led to the development of a new generation of efficient and pow erful visible high-brightness LEDs and we expect that similar improvements will be achieved in solid-state UV technology.




Technical Proceedings of the 2007 Cleantech Conference and Trade Show


Book Description

The Cleantech conference, which runs parallel with NSTI's Nanotech, is designed to promote advancements in traditional technologies, emerging technologies, and clean business practices, covering important developments in renewable energy, clean technologies, business and policy, bio-energy, and novel technologies, as well as environme




Asymmetric Quantum Well Structures for Enhanced Infrared Photon Absorption


Book Description

Compared to inter-band transition for photon absorption in a quantum wells, intra-band (or inter-subband) transitions in heterojunction (GaAs/InP) quantum wells can provide access to a broader range of wavelengths for detector design, specifically detectors operating in the mid infrared region of spectrum (4-12 [micro]m) and beyond is possible. These quantum wells not only provide great flexibility in optimizing the Eigen energy levels or wavefunctions, and inter-subband optical matrix elements determining the corresponding transition probability, but also allow controlling electron-phonon scattering rates and thus electron lifetime. The research presented in this dissertation investigates asymmetric quantum well structures formed through III-V semiconductor material system such as AlGaAs/ InxGa(1-x)As/InyGa(1-y) As/AlGaAs that can further improve the responsivity through higher carrier mobility. Asymmetry is introduced by using multiple materials to form the well region. The advantage of exploring stepped quantum well structure stems from experimental evidence that such structures are capable of absorbing normal incidence and thus eliminates the requirement of incorporating additional optical coupling schemes such as grating structures. An important contribution of this research is the development of an analytical model to analyze single or multiple quantum well structures to quantify photon absorption. The physical model developed in this work is based on non-equilibrium Green's function (NEGF), Fermi's golden rule and quantum mechanical wave impedance concept. The approach has two distinct advantages. First, it is accurate, easily programmable and yet computationally efficient. Second, it facilitates quantifying the broadening of states resulting from both photon absorption and tunneling, which provides important insight for improving detection efficiency. Instead of being presented through calculations, such broadening has been simply assumed in previously reported works. The method developed in this research provides an efficient methodology to quantify the absorption rate of photons with different polarizations. The study looks into the design and analysis of the wells to enhance infrared radiation detection, and suggests mechanisms to optimize the structures in terms of material choice, composition, structural geometry and applied voltages. The high electron mobility and hence drift velocity in InGaAs ( >5×106cm/s), along with low carrier recapture lifetime, is expected to improve the detection speed of the device. Unlike GaAs/AlGaAs, the lattice mismatch at InGaAs/AlGaAs interface is likely to introduce strain in the structure. The effect of such strain as well as the layer thickness is taken into account in this work. Also, a methodology for achieving voltage tenability, i.e. the ability to detect different wavelengths at different bias voltages has been investigated. Although both n-type and p-type systems have potential for optoelectronic devices, n-type quantum wells are more advantageous because of their nearly parabolic sub-band structure. As for material consideration, direct band gap material based systems, such as AlGaAs/InGaAs and AlGaAs/GaAs, have been found to be particularly suitable for n-type QWIP photodetectors. The reason being that the electrons in such materials occupy states around the [gamma]valley where the effective mass is smaller and therefore mobility is higher; a condition which leads to higher photoresponsivity. Moreover such systems allow the possibility of highly stable device operation owing to the insensitivity of intra-band transition energies to temperature fluctuation and reduced influence of Auger recombination.







Seeing Photons


Book Description

The Department of Defense recently highlighted intelligence, surveillance, and reconnaissance (ISR) capabilities as a top priority for U.S. warfighters. Contributions provided by ISR assets in the operational theaters in Iraq and Afghanistan have been widely documented in press reporting. While the United States continues to increase investments in ISR capabilities, other nations not friendly to the United States will continue to seek countermeasures to U.S. capabilities. The Technology Warning Division of the Defense Intelligence Agency's (DIA) Defense Warning Office (DWO) has the critical responsibility, in collaborations with other components of the intelligence community (IC), for providing U.S. policymakers insight into technological developments that may impact future U.S. warfighting capabilities. To this end, the IC requested that the National Research Council (NRC) investigate and report on key visible and infrared detector technologies, with potential military utility, that are likely to be developed in the next 10-15 years. This study is the eighth in a series sponsored by the DWO and executed under the auspices of the NRC TIGER (Technology Insight-Gauge, Evaluate, and Review) Standing Committee.




Infrared Photoelectronics


Book Description

Includes Proceedings Vol. 7821




Terahertz Sensing Technology


Book Description

The last research frontier in high frequency electronics lies in the so-called terahertz (or submillimeter wave) regime, between the traditional microwave and the infrared domains. Significant scientific and technical challenges within the terahertz (THz) frequency regime have recently motivated an array of new research activities. During the last few years, major research programs have emerged that are focused on advancing the state of the art in THz frequency electronic technology and on investigating novel applications of THz frequency sensing. This book provides a detailed review of the new THz frequency technological developments that are emerging across a wide spectrum of sensing and technology areas. Volume II presents cutting edge results in two primary areas: (1) research that is attempting to establish THz-frequency sensing as a new characterization tool for chemical, biological and semiconductor materials, and (2) theoretical and experimental efforts to define new device concepts within the OC THz gapOCO. Contents: THz-Frequency Spectroscopic Sensing of DNA and Related Biological Materials (T Globus et al.); Spectroscopy with Electronic Terahertz Techniques for Chemical and Biological Sensing (M K Choi et al.); Terahertz Applications to Biomolecular Sensing (A G Markelz & S E Whitmire); Characteristics of Nano-Scale Composites at THz and IR Spectral Regions (J F Federici & H Grebel); Fundamentals of Terrestrial Millimeter-Wave and THz Remote Sensing (E R Brown); Terahertz Emission Using Quantum Dots and Microcavities (G S Solomon et al.); Terahertz Transport in Semiconductor Quantum Structures (S J Allen & J S Scott); Advanced Theory of Instability in Tunneling Nanostructures (D L Woolard et al.); Wigner Function Simulations of Quantum DeviceOCoCircuits Interactions (H L Grubin & R C Buggeln); Continuous-Wave Terahertz Spectroscopy of Plasmas and Biomolecules (D F Plusquellic et al.). Readership: Undergraduates, graduate students, academics and researchers in engineering and science."