The Materials Science of Semiconductors


Book Description

This book describes semiconductors from a materials science perspective rather than from condensed matter physics or electrical engineering viewpoints. It includes discussion of current approaches to organic materials for electronic devices. It further describes the fundamental aspects of thin film nucleation and growth, and the most common physical and chemical vapor deposition techniques. Examples of the application of the concepts in each chapter to specific problems or situations are included, along with recommended readings and homework problems.




Semiconductors and Electronic Materials


Book Description

This is the fourth volume in a series exploring progess in photothermal and photoacoustic science and technology. The book focuses on semiconductors and electronic materials.




Electronic Materials


Book Description

Mechanical and thermal properties are reviewed and electrical and magnetic properties are emphasized. Basics of symmetry and internal structure of crystals and the main properties of metals, dielectrics, semiconductors, and magnetic materials are discussed. The theory and modern experimental data are presented, as well as the specifications of materials that are necessary for practical application in electronics. The modern state of research in nanophysics of metals, magnetic materials, dielectrics and semiconductors is taken into account, with particular attention to the influence of structure on the physical properties of nano-materials. The book uses simplified mathematical treatment of theories, while emphasis is placed on the basic concepts of physical phenomena in electronic materials. Most chapters are devoted to the advanced scientific and technological problems of electronic materials; in addition, some new insights into theoretical facts relevant to technical devices are presented. Electronic Materials is an essential reference for newcomers to the field of electronics, providing a fundamental understanding of important basic and advanced concepts in electronic materials science. Provides important overview of the fundamentals of electronic materials properties significant for device applications along with advanced and applied concepts essential to those working in the field of electronics Takes a simplified and mathematical approach to theories essential to the understanding of electronic materials and summarizes important takeaways at the end of each chapter Interweaves modern experimental data and research in topics such as nanophysics, nanomaterials and dielectrics




Semiconductor Materials


Book Description

Semiconductor Materials presents physico-chemical, electronic, electrical, elastic, mechanical, magnetic, optical, and other properties of a vast group of elemental, binary, and ternary inorganic semiconductors and their solid solutions. It also discusses the properties of organic semiconductors. Descriptions are given of the most commonly used semiconductor devices-charge-coupled devices, field-effect transistors, unijunction transistors, thyristors, Zener and avalanche diodes, and photodiodes and lasers. The current trend of transitioning from silicon technology to gallium arsenide technology in field-effect-based electronic devices is a special feature that is also covered. More than 300 figures and 100 tables highlight discussions in the text, and more than 2,000 references guide you to further sources on specific topics. Semiconductor Materials is a relatively compact book containing vast information on semiconductor material properties. Readers can compare results of the property measurements that have been reported by different authors and critically compare the data using the reference information contained in the book. Engineers who design and improve semiconductor devices, researchers in physics and chemistry, and students of materials science and electronics will find this a valuable guide.




Semiconductor Materials


Book Description

The technological progress is closely related to the developments of various materials and tools made of those materials. Even the different ages have been defined in relation to the materials used. Some of the major attributes of the present-day age (i.e., the electronic materials’ age) are such common tools as computers and fiber-optic telecommunication systems, in which semiconductor materials provide vital components for various mic- electronic and optoelectronic devices in applications such as computing, memory storage, and communication. The field of semiconductors encompasses a variety of disciplines. This book is not intended to provide a comprehensive description of a wide range of semiconductor properties or of a continually increasing number of the semiconductor device applications. Rather, the main purpose of this book is to provide an introductory perspective on the basic principles of semiconductor materials and their applications that are described in a relatively concise format in a single volume. Thus, this book should especially be suitable as an introductory text for a single course on semiconductor materials that may be taken by both undergraduate and graduate engineering students. This book should also be useful, as a concise reference on semiconductor materials, for researchers working in a wide variety of fields in physical and engineering sciences.




Theory of Transport Properties of Semiconductor Nanostructures


Book Description

Recent advances in the fabrication of semiconductors have created almost un limited possibilities to design structures on a nanometre scale with extraordinary electronic and optoelectronic properties. The theoretical understanding of elec trical transport in such nanostructures is of utmost importance for future device applications. This represents a challenging issue of today's basic research since it requires advanced theoretical techniques to cope with the quantum limit of charge transport, ultrafast carrier dynamics and strongly nonlinear high-field ef fects. This book, which appears in the electronic materials series, presents an over view of the theoretical background and recent developments in the theory of electrical transport in semiconductor nanostructures. It contains 11 chapters which are written by experts in their fields. Starting with a tutorial introduction to the subject in Chapter 1, it proceeds to present different approaches to transport theory. The semiclassical Boltzmann transport equation is in the centre of the next three chapters. Hydrodynamic moment equations (Chapter 2), Monte Carlo techniques (Chapter 3) and the cellular au tomaton approach (Chapter 4) are introduced and illustrated with applications to nanometre structures and device simulation. A full quantum-transport theory covering the Kubo formalism and nonequilibrium Green's functions (Chapter 5) as well as the density matrix theory (Chapter 6) is then presented.




Semiconductor Physical Electronics


Book Description

The purpose of this book is to provide the reader with a self-contained treatment of fundamen tal solid state and semiconductor device physics. The material presented in the text is based upon the lecture notes of a one-year graduate course sequence taught by this author for many years in the ·Department of Electrical Engineering of the University of Florida. It is intended as an introductory textbook for graduate students in electrical engineering. However, many students from other disciplines and backgrounds such as chemical engineering, materials science, and physics have also taken this course sequence, and will be interested in the material presented herein. This book may also serve as a general reference for device engineers in the semiconductor industry. The present volume covers a wide variety of topics on basic solid state physics and physical principles of various semiconductor devices. The main subjects covered include crystal structures, lattice dynamics, semiconductor statistics, energy band theory, excess carrier phenomena and recombination mechanisms, carrier transport and scattering mechanisms, optical properties, photoelectric effects, metal-semiconductor devices, the p--n junction diode, bipolar junction transistor, MOS devices, photonic devices, quantum effect devices, and high speed III-V semiconductor devices. The text presents a unified and balanced treatment of the physics of semiconductor materials and devices. It is intended to provide physicists and mat erials scientists with more device backgrounds, and device engineers with a broader knowledge of fundamental solid state physics.




Electronic Materials and Devices


Book Description

This book provides the knowledge and understanding necessary to comprehend the operation of individual electronic devices that are found in modern micro-electronics. As a textbook, it is aimed at the third-year undergraduate curriculum in electrical engineering, in which the physical electronic properties are used to develop an introductory understanding to the semiconductor devices used in modern micro-electronics. The emphasis of the book is on providing detailed physical insight into the microscopic mechanisms that form the cornerstone for these technologies. Mathematical treatments are therefore kept to the minimum level necessary to achieve suitable rigor. * Covers crystalline structure * Thorough introduction to the key principles of quantum mechanics * Semiconductor statistics, impurities, and controlled doping * Detailed analysis of the operation of semiconductor devices, including p-n junctions, field-effect transistors, metal-semiconductor junctions and bipolar junction transistors * Discussion of optoelectronic devices such as light-emitting diodes (LEDs) and lasers * Chapters on the device applications of dielectrics, magnetic materials, and superconductors




Electronic Materials


Book Description

Electronic materials are a dominant factor in many areas of modern technology. The need to understand'them is paramount; this book addresses that need. The main aim of this volume is to provide a broad unified view of electronic materials, including key aspects of their science and technology and also, in many cases, their commercial implications. It was considered important that much of the contents of such an overview should be intelligible by a broad audience of graduates and industrial scientists, and relevant to advanced undergraduate studies. It should also be up to date and even looking forward to the future. Although more extensive, and written specifically as a text, the resulting book has much in common with a short course of the same name given at Coventry Polytechnic. The interpretation of the term "electronic materials" used in this volume is a very broad one, in line with the initial aim. The principal restriction is that, with one or two minor exceptions relating to aspects of device processing, for example, the materials dealt with are all active materials. Materials such as simple insulators or simple conductors, playing only a passive role, are not singled out for consider ation. Active materials might be defined as those involved in the processing of signals in a way that depends crucially on some specific property of those materials, and the immediate question then concerns the types of signals that might be considered.




Reliability and Failure of Electronic Materials and Devices


Book Description

Reliability and Failure of Electronic Materials and Devices is a well-established and well-regarded reference work offering unique, single-source coverage of most major topics related to the performance and failure of materials used in electronic devices and electronics packaging. With a focus on statistically predicting failure and product yields, this book can help the design engineer, manufacturing engineer, and quality control engineer all better understand the common mechanisms that lead to electronics materials failures, including dielectric breakdown, hot-electron effects, and radiation damage. This new edition adds cutting-edge knowledge gained both in research labs and on the manufacturing floor, with new sections on plastics and other new packaging materials, new testing procedures, and new coverage of MEMS devices. Covers all major types of electronics materials degradation and their causes, including dielectric breakdown, hot-electron effects, electrostatic discharge, corrosion, and failure of contacts and solder joints New updated sections on "failure physics," on mass transport-induced failure in copper and low-k dielectrics, and on reliability of lead-free/reduced-lead solder connections New chapter on testing procedures, sample handling and sample selection, and experimental design Coverage of new packaging materials, including plastics and composites