Diffusions, Markov Processes, and Martingales: Volume 1, Foundations


Book Description

Now available in paperback, this celebrated book has been prepared with readers' needs in mind, remaining a systematic guide to a large part of the modern theory of Probability, whilst retaining its vitality. The authors' aim is to present the subject of Brownian motion not as a dry part of mathematical analysis, but to convey its real meaning and fascination. The opening, heuristic chapter does just this, and it is followed by a comprehensive and self-contained account of the foundations of theory of stochastic processes. Chapter 3 is a lively and readable account of the theory of Markov processes. Together with its companion volume, this book helps equip graduate students for research into a subject of great intrinsic interest and wide application in physics, biology, engineering, finance and computer science.




Probability


Book Description




Mathematics of the Bond Market: A Lévy Processes Approach


Book Description

Analyses bond market models with Lévy stochastic factors, suitable for graduates and researchers in probability and mathematical finance.




Portfolio Theory and Arbitrage: A Course in Mathematical Finance


Book Description

This book develops a mathematical theory for finance, based on a simple and intuitive absence-of-arbitrage principle. This posits that it should not be possible to fund a non-trivial liability, starting with initial capital arbitrarily near zero. The principle is easy-to-test in specific models, as it is described in terms of the underlying market characteristics; it is shown to be equivalent to the existence of the so-called “Kelly” or growth-optimal portfolio, of the log-optimal portfolio, and of appropriate local martingale deflators. The resulting theory is powerful enough to treat in great generality the fundamental questions of hedging, valuation, and portfolio optimization. The book contains a considerable amount of new research and results, as well as a significant number of exercises. It can be used as a basic text for graduate courses in Probability and Stochastic Analysis, and in Mathematical Finance. No prior familiarity with finance is required, but it is assumed that readers have a good working knowledge of real analysis, measure theory, and of basic probability theory. Familiarity with stochastic analysis is also assumed, as is integration with respect to continuous semimartingales.




Stochastic Integration Theory


Book Description

This graduate level text covers the theory of stochastic integration, an important area of Mathematics that has a wide range of applications, including financial mathematics and signal processing. Aimed at graduate students in Mathematics, Statistics, Probability, Mathematical Finance, and Economics, the book not only covers the theory of the stochastic integral in great depth but also presents the associated theory (martingales, Levy processes) and important examples (Brownian motion, Poisson process).







Stochastic Integration


Book Description

Probability and Mathematical Statistics: A Series of Monographs and Textbooks: Stochastic Integration focuses on the processes, methodologies, and approaches involved in stochastic integration. The publication first takes a look at the Ito formula, stochastic integral equations, and martingales and semimartingales. Discussions focus on Meyer process and decomposition theorem, inequalities, examples of stochastic differential equations, general stochastic integral equations, and applications of the Ito formula. The text then elaborates on stochastic measures, including stochastic measures and related integration and the Riesz representation theorem. The manuscript tackles the special features of infinite dimensional stochastic integration, as well as the isometric integral of a Hubert-valued square integrable martingale, cylindrical processes, and stochastic integral with respect to 2-cylindrical martingales with finite quadratic variation. The book is a valuable reference for mathematicians and researchers interested in stochastic integration.




Statistics of Random Processes


Book Description

These volumes cover non-linear filtering (prediction and smoothing) theory and its applications to the problem of optimal estimation, control with incomplete data, information theory, and sequential testing of hypothesis. Also presented is the theory of martingales, of interest to those who deal with problems in financial mathematics. These editions include new material, expanded chapters, and comments on recent progress in the field.




Statistics of Random Processes


Book Description

These volumes cover non-linear filtering (prediction and smoothing) theory and its applications to the problem of optimal estimation, control with incomplete data, information theory, and sequential testing of hypothesis. Also presented is the theory of martingales, of interest to those who deal with problems in financial mathematics. These editions include new material, expanded chapters, and comments on recent progress in the field.




The Mathematics of Errors


Book Description

The Mathematics of Errors presents an original, rigorous and systematic approach to the calculus of errors, targeted at both the engineer and the mathematician. Starting from Gauss's original point of view, the book begins as an introduction suitable for graduate students, leading to recent developments in stochastic analysis and Malliavin calculus, including contributions by the author. Later chapters, aimed at a more mature audience, require some familiarity with stochastic calculus and Dirichlet forms. Sensitivity analysis, in particular, plays an important role in the book. Detailed applications in a range of fields, such as engineering, robotics, statistics, financial mathematics, climate science, or quantum mechanics are discussed through concrete examples. Throughout the book, error analysis is presented in a progressive manner, motivated by examples and appealing to the reader’s intuition. By formalizing the intuitive concept of error and richly illustrating its scope for application, this book provides readers with a blueprint to apply advanced mathematics in practical settings. As such, it will be of immediate interest to engineers and scientists, whilst providing mathematicians with an original presentation. Nicolas Bouleau has directed the mathematics center of the Ecole des Ponts ParisTech for more than ten years. He is known for his theory of error propagation in complex models. After a degree in engineering and architecture, he decided to pursue a career in mathematics under the influence of Laurent Schwartz. He has also written on the production of knowledge, sustainable economics and mathematical models in finance. Nicolas Bouleau is a recipient of the Prix Montyon from the French Academy of Sciences.