Séminaire de Probabilités XLIV


Book Description

As usual, some of the contributions to this 44th Séminaire de Probabilités were presented during the Journées de Probabilités held in Dijon in June 2010. The remainder were spontaneous submissions or were solicited by the editors. The traditional and historical themes of the Séminaire are covered, such as stochastic calculus, local times and excursions, and martingales. Some subjects already touched on in the previous volumes are still here: free probability, rough paths, limit theorems for general processes (here fractional Brownian motion and polymers), and large deviations. Lastly, this volume explores new topics, including variable length Markov chains and peacocks. We hope that the whole volume is a good sample of the main streams of current research on probability and stochastic processes, in particular those active in France.




In Memoriam Marc Yor - Séminaire de Probabilités XLVII


Book Description

This volume is dedicated to the memory of Marc Yor, who passed away in 2014. The invited contributions by his collaborators and former students bear testament to the value and diversity of his work and of his research focus, which covered broad areas of probability theory. The volume also provides personal recollections about him, and an article on his essential role concerning the Doeblin documents. With contributions by P. Salminen, J-Y. Yen & M. Yor; J. Warren; T. Funaki; J. Pitman& W. Tang; J-F. Le Gall; L. Alili, P. Graczyk & T. Zak; K. Yano & Y. Yano; D. Bakry & O. Zribi; A. Aksamit, T. Choulli & M. Jeanblanc; J. Pitman; J. Obloj, P. Spoida & N. Touzi; P. Biane; J. Najnudel; P. Fitzsimmons, Y. Le Jan & J. Rosen; L.C.G. Rogers & M. Duembgen; E. Azmoodeh, G. Peccati & G. Poly, timP-L Méliot, A. Nikeghbali; P. Baldi; N. Demni, A. Rouault & M. Zani; N. O'Connell; N. Ikeda & H. Matsumoto; A. Comtet & Y. Tourigny; P. Bougerol; L. Chaumont; L. Devroye & G. Letac; D. Stroock and M. Emery.




Peacocks and Associated Martingales, with Explicit Constructions


Book Description

We call peacock an integrable process which is increasing in the convex order; such a notion plays an important role in Mathematical Finance. A deep theorem due to Kellerer states that a process is a peacock if and only if it has the same one-dimensional marginals as a martingale. Such a martingale is then said to be associated to this peacock. In this monograph, we exhibit numerous examples of peacocks and associated martingales with the help of different methods: construction of sheets, time reversal, time inversion, self-decomposability, SDE, Skorokhod embeddings. They are developed in eight chapters, with about a hundred of exercises.




Advances in Mathematics and Applications


Book Description

This book celebrates the 50th anniversary of the Institute of Mathematics, Statistics and Scientific Computing (IMECC) of the University of Campinas, Brazil, by offering reviews of selected research developed at one of the most prestigious mathematics institutes in Latin America. Written by senior professors at the IMECC, it covers topics in pure and applied mathematics and statistics ranging from differential geometry, dynamical systems, Lie groups, and partial differential equations to computational optimization, mathematical physics, stochastic process, time series, and more. A report on the challenges and opportunities of research in applied mathematics - a highly active field of research in the country - and highlights of the Institute since its foundation in 1968 completes this historical volume, which is unveiled in the same year that the International Mathematical Union (IMU) names Brazil as a member of the Group V of countries with the most relevant contributions in mathematics.




Statistical Topics and Stochastic Models for Dependent Data with Applications


Book Description

This book is a collective volume authored by leading scientists in the field of stochastic modelling, associated statistical topics and corresponding applications. The main classes of stochastic processes for dependent data investigated throughout this book are Markov, semi-Markov, autoregressive and piecewise deterministic Markov models. The material is divided into three parts corresponding to: (i) Markov and semi-Markov processes, (ii) autoregressive processes and (iii) techniques based on divergence measures and entropies. A special attention is payed to applications in reliability, survival analysis and related fields.




Séminaire de Probabilités XXXVI


Book Description

The 36th Sminaire de Probabilits contains an advanced course on Logarithmic Sobolev Inequalities by A. Guionnet and B. Zegarlinski, as well as two shorter surveys by L. Pastur and N. O'Connell on the theory of random matrices and their links with stochastic processes. The main themes of the other contributions are Logarithmic Sobolev Inequalities, Stochastic Calculus, Martingale Theory and Filtrations. Besides the traditional readership of the Sminaires, this volume will be useful to researchers in statistical mechanics and mathematical finance.




A Course on Rough Paths


Book Description

With many updates and additional exercises, the second edition of this book continues to provide readers with a gentle introduction to rough path analysis and regularity structures, theories that have yielded many new insights into the analysis of stochastic differential equations, and, most recently, stochastic partial differential equations. Rough path analysis provides the means for constructing a pathwise solution theory for stochastic differential equations which, in many respects, behaves like the theory of deterministic differential equations and permits a clean break between analytical and probabilistic arguments. Together with the theory of regularity structures, it forms a robust toolbox, allowing the recovery of many classical results without having to rely on specific probabilistic properties such as adaptedness or the martingale property. Essentially self-contained, this textbook puts the emphasis on ideas and short arguments, rather than aiming for the strongest possible statements. A typical reader will have been exposed to upper undergraduate analysis and probability courses, with little more than Itô-integration against Brownian motion required for most of the text. From the reviews of the first edition: "Can easily be used as a support for a graduate course ... Presents in an accessible way the unique point of view of two experts who themselves have largely contributed to the theory" - Fabrice Baudouin in the Mathematical Reviews "It is easy to base a graduate course on rough paths on this ... A researcher who carefully works her way through all of the exercises will have a very good impression of the current state of the art" - Nicolas Perkowski in Zentralblatt MATH







Stochastic Inequalities and Applications


Book Description

Concentration inequalities, which express the fact that certain complicated random variables are almost constant, have proven of utmost importance in many areas of probability and statistics. This volume contains refined versions of these inequalities, and their relationship to many applications particularly in stochastic analysis. The broad range and the high quality of the contributions make this book highly attractive for graduates, postgraduates and researchers in the above areas.




Séminaire de Probabilités XLVI


Book Description

Providing a broad overview of the current state of the art in probability theory and its applications, and featuring an article coauthored by Mark Yor, this volume contains contributions on branching processes, Lévy processes, random walks and martingales and their connection with, among other topics, rough paths, semi-groups, heat kernel asymptotics and mathematical finance.