Séminaire de Théorie Des Nombres


Book Description

This is the 13th annual volume of papers based on lectures given at the Seminaire des Nombres de Paris. The results presented here by an international group of mathematicians reflect recent work in many areas of number theory and should form a basis for further discussion on these topics.







Séminaire de Théorie Des Nombres


Book Description

Le travail ci-dessous developpe sur quelques points les tex:tes fondamentaux de C.L. Siegel [13[ et de K. Ramachandra [2). Remerclements C'est au Max Planck Institut de Bonn que la plus grande part des resultats (th. 2 et 3, ex:ception faite du point 3 d et th. 4 et 5) ont ete soit rectiges soit con~s. La rectaction definitive de ce travail a eu lieu ä l'Institut Fourier de Grenoble durant l'hiver 1990. Le th. 1 tel qu'il apparait ici, et le corollaire du th. 6 cf. identite (13), sont nouveaux. On trouvera une rectaction detailleedes th. 2 et 3 dans [51 et, parmi d'autres resultats, des th. 4, 5 et 6 dans [7). Que tous mes collegues et les deux equipes de secretartat recoivent ici mes remerciements les plus chaleureux. 2 1) On pose e( x) = e 1rix, x E C. Pour L un reseau complex:e, on note une base positivement olientee de L = lw + lw c'est-ä-dire teile que 1 2 On definit alors une forme modulaire .,.p> de poids 1 par 1](2)(w) ~fn (21l"i)ql/12 IJ ( - qn)2 1 { w2 n>l 1 12 q = e(W) , q 1 = e(W/12) , W = wt!w2 .










Finite Geometries


Book Description

When? These are the proceedings of Finite Geometries, the Fourth Isle of Thorns Conference, which took place from Sunday 16 to Friday 21 July, 2000. It was organised by the editors of this volume. The Third Conference in 1990 was published as Advances in Finite Geometries and Designs by Oxford University Press and the Second Conference in 1980 was published as Finite Geometries and Designs by Cambridge University Press. The main speakers were A. R. Calderbank, P. J. Cameron, C. E. Praeger, B. Schmidt, H. Van Maldeghem. There were 64 participants and 42 contributions, all listed at the end of the volume. Conference web site http://www. maths. susx. ac. uk/Staff/JWPH/ Why? This collection of 21 articles describes the latest research and current state of the art in the following inter-linked areas: • combinatorial structures in finite projective and affine spaces, also known as Galois geometries, in which combinatorial objects such as blocking sets, spreads and partial spreads, ovoids, arcs and caps, as well as curves and hypersurfaces, are all of interest; • geometric and algebraic coding theory; • finite groups and incidence geometries, as in polar spaces, gener alized polygons and diagram geometries; • algebraic and geometric design theory, in particular designs which have interesting symmetric properties and difference sets, which play an important role, because of their close connections to both Galois geometry and coding theory.




Algorithmic Number Theory


Book Description

This book constitutes the refereed proceedings of the 4th International Algorithmic Number Theory Symposium, ANTS-IV, held in Leiden, The Netherlands, in July 2000. The book presents 36 contributed papers which have gone through a thorough round of reviewing, selection and revision. Also included are 4 invited survey papers. Among the topics addressed are gcd algorithms, primality, factoring, sieve methods, cryptography, linear algebra, lattices, algebraic number fields, class groups and fields, elliptic curves, polynomials, function fields, and power sums.




Number Theory in Progress


Book Description

Proceedings of the International Conference on Number Theory organized by the Stefan Banach International Mathematical Center in Honor of the 60th Birthday of Andrzej Schinzel, Zakopane, Poland, June 30-July 9, 1997.




Number Theory


Book Description

Number Theory is more than a comprehensive treatment of the subject. It is an introduction to topics in higher level mathematics, and unique in its scope; topics from analysis, modern algebra, and discrete mathematics are all included. The book is divided into two parts. Part A covers key concepts of number theory and could serve as a first course on the subject. Part B delves into more advanced topics and an exploration of related mathematics. The prerequisites for this self-contained text are elements from linear algebra. Valuable references for the reader are collected at the end of each chapter. It is suitable as an introduction to higher level mathematics for undergraduates, or for self-study.