Sensing, Signaling and Cell Adaptation


Book Description

In this volume of Cell and Molecular Responses to Stress articles provide up-to-date information on key areas of signal sensing (sensing of pain, heat, cold, light, infrared radiation), molecules involved in the intracellular transmission of these signals, metabolic responses to stress including changes in gene expression and production of specialized proteins that aid cell responses to factors including interrupted blood supply (ischemia), oxygen limitation (hypoxia/anoxia), freezing and dehydration, amino acid limitation, radiation and processing drugs. There are chapters which also provide insights into new technologies (such as cDNA arrays), analysis of metabolic control theory (a key method for analysing stress effects on cells), and examine how enzymes evolve in the face of stress.




Signaling in Plants


Book Description

This is the first comprehensive monograph on all emerging topics in plant signaling. The book addresses diverse aspects of signaling at all levels of plant organization. Emphasis is placed on the integrative aspects of signaling.




Hormones, Metabolism and the Benefits of Exercise


Book Description

The world is faced with an epidemic of metabolic diseases such as obesity and type 2 diabetes. This is due to changes in dietary habits and the decrease in physical activity. Exercise is usually part of the prescription, the first line of defense, to prevent or treat metabolic disorders. However, we are still learning how and why exercise provides metabolic benefits in human health. This open access volume focuses on the cellular and molecular pathways that link exercise, muscle biology, hormones and metabolism. This will include novel “myokines” that might act as new therapeutic agents in the future.




Mitochondria and Cancer


Book Description

Nearly a century of scientific research has revealed that mitochondrial dysfunction is one of the most common and consistent phenotypes of cancer cells. A number of notable differences in the mitochondria of normal and cancer cells have been described. These include differences in mitochondrial metabolic activity, molecular composition of mitochondria and mtDNA sequence, as well as in alteration of nuclear genes encoding mitochondrial proteins. This book, Mitochondria and Cancer, edited by Keshav K. Singh and Leslie C. Costello, presents thorough analyses of mitochondrial dysfunction as one of the hallmarks of cancer, discusses the clinical implications of mitochondrial defects in cancer, and as unique cellular targets for novel and selective anti-cancer therapy.




Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria


Book Description

Bacteria in various habitats are subject to continuously changing environmental conditions, such as nutrient deprivation, heat and cold stress, UV radiation, oxidative stress, dessication, acid stress, nitrosative stress, cell envelope stress, heavy metal exposure, osmotic stress, and others. In order to survive, they have to respond to these conditions by adapting their physiology through sometimes drastic changes in gene expression. In addition they may adapt by changing their morphology, forming biofilms, fruiting bodies or spores, filaments, Viable But Not Culturable (VBNC) cells or moving away from stress compounds via chemotaxis. Changes in gene expression constitute the main component of the bacterial response to stress and environmental changes, and involve a myriad of different mechanisms, including (alternative) sigma factors, bi- or tri-component regulatory systems, small non-coding RNA’s, chaperones, CHRIS-Cas systems, DNA repair, toxin-antitoxin systems, the stringent response, efflux pumps, alarmones, and modulation of the cell envelope or membranes, to name a few. Many regulatory elements are conserved in different bacteria; however there are endless variations on the theme and novel elements of gene regulation in bacteria inhabiting particular environments are constantly being discovered. Especially in (pathogenic) bacteria colonizing the human body a plethora of bacterial responses to innate stresses such as pH, reactive nitrogen and oxygen species and antibiotic stress are being described. An attempt is made to not only cover model systems but give a broad overview of the stress-responsive regulatory systems in a variety of bacteria, including medically important bacteria, where elucidation of certain aspects of these systems could lead to treatment strategies of the pathogens. Many of the regulatory systems being uncovered are specific, but there is also considerable “cross-talk” between different circuits. Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria is a comprehensive two-volume work bringing together both review and original research articles on key topics in stress and environmental control of gene expression in bacteria. Volume One contains key overview chapters, as well as content on one/two/three component regulatory systems and stress responses, sigma factors and stress responses, small non-coding RNAs and stress responses, toxin-antitoxin systems and stress responses, stringent response to stress, responses to UV irradiation, SOS and double stranded systems repair systems and stress, adaptation to both oxidative and osmotic stress, and desiccation tolerance and drought stress. Volume Two covers heat shock responses, chaperonins and stress, cold shock responses, adaptation to acid stress, nitrosative stress, and envelope stress, as well as iron homeostasis, metal resistance, quorum sensing, chemotaxis and biofilm formation, and viable but not culturable (VBNC) cells. Covering the full breadth of current stress and environmental control of gene expression studies and expanding it towards future advances in the field, these two volumes are a one-stop reference for (non) medical molecular geneticists interested in gene regulation under stress.










Plant Signaling Molecules


Book Description

Plant Signaling Molecule: Role and Regulation under Stressful Environments explores tolerance mechanisms mediated by signaling molecules in plants for achieving sustainability under changing environmental conditions. Including a wide range of potential molecules, from primary to secondary metabolites, the book presents the status and future prospects of the role and regulation of signaling molecules at physiological, biochemical, molecular and structural level under abiotic stress tolerance. This book is designed to enhance the mechanistic understanding of signaling molecules and will be an important resource for plant biologists in developing stress tolerant crops to achieve sustainability under changing environmental conditions. - Focuses on plant biology under stress conditions - Provides a compendium of knowledge related to plant adaptation, physiology, biochemistry and molecular responses - Identifies treatments that enhance plant tolerance to abiotic stresses - Illustrates specific physiological pathways that are considered key points for plant adaptation or tolerance to abiotic stresses




Mechanotransduction


Book Description

Progress in Molecular Biology and Translational Science provides a forum for discussion of new discoveries, approaches, and ideas in molecular biology. It contains contributions from leaders in their fields and abundant references. Volume 126 features in-depth reviews that focus on the tools required to investigate mechanotransduction. Additional chapters focus on how we can use these tools to answer fundamental questions about the interaction of physical forces with cell biology, morphogenesis, and function of mature structures. Chapters in the volume are authored by a unique combination of cell biologists and engineers, providing a range of perspectives on mechanotransduction. - Provides a unique combination of perspectives from biologists and engineers - Engaging to people of many training backgrounds