Sensor Array Signal Processing


Book Description

Since publication of the first edition of Sensor Array Signal Processing in 2000, the field it heralded has come of age. Sensor arrays helped usher in the age of wireless communication by meeting the increasing capacity requirements of ever growing wireless networks, but that is only one example of the number of uses served by this valuable te




Sensor Array Signal Processing


Book Description

Sensors arrays are used in diverse applications across a broad range of disciplines. Regardless of the application, however, the tools of sensor array signal processing remain the same. Furthermore, whether your interest is in acoustic, seismic, mechanical, or electromagnetic wavefields, they all have a common mathematical framework. Mastering this







Distributed Sensor Arrays


Book Description

Discusses localization in 2D and 3D space Includes random and sparse sensor distribution Provides effective algorithms and illustrative numerical examples Concepts are described in detailed mathematical form Contains simple lab experiments




Handbook on Array Processing and Sensor Networks


Book Description

A handbook on recent advancements and the state of the art in array processing and sensor Networks Handbook on Array Processing and Sensor Networks provides readers with a collection of tutorial articles contributed by world-renowned experts on recent advancements and the state of the art in array processing and sensor networks. Focusing on fundamental principles as well as applications, the handbook provides exhaustive coverage of: wavelets; spatial spectrum estimation; MIMO radio propagation; robustness issues in sensor array processing; wireless communications and sensing in multi-path environments using multi-antenna transceivers; implicit training and array processing for digital communications systems; unitary design of radar waveform diversity sets; acoustic array processing for speech enhancement; acoustic beamforming for hearing aid applications; undetermined blind source separation using acoustic arrays; array processing in astronomy; digital 3D/4D ultrasound imaging technology; self-localization of sensor networks; multi-target tracking and classification in collaborative sensor networks via sequential Monte Carlo; energy-efficient decentralized estimation; sensor data fusion with application to multi-target tracking; distributed algorithms in sensor networks; cooperative communications; distributed source coding; network coding for sensor networks; information-theoretic studies of wireless networks; distributed adaptive learning mechanisms; routing for statistical inference in sensor networks; spectrum estimation in cognitive radios; nonparametric techniques for pedestrian tracking in wireless local area networks; signal processing and networking via the theory of global games; biochemical transport modeling, estimation, and detection in realistic environments; and security and privacy for sensor networks. Handbook on Array Processing and Sensor Networks is the first book of its kind and will appeal to researchers, professors, and graduate students in array processing, sensor networks, advanced signal processing, and networking.




Sensor Array Signal Processing


Book Description

Sensors arrays are used in diverse applications across a broad range of disciplines. Regardless of the application, however, the tools of sensor array signal processing remain the same. Furthermore, whether your interest is in acoustic, seismic, mechanical, or electromagnetic wavefields, they all have a common mathematical framework. Mastering this framework and those tools lays a strong foundation for more specialized study and research. Sensor Array Signal Processing helps build that foundation. It unravels the underlying principles of the subject without reference to any particular application. Instead, the author focuses on the common threads that exist in wavefield analysis. After introducing the basic equations governing different wavefields, the treatment includes topics from simple beamformation, spatial filtering, and high resolution DOA estimation to imaging and reflector mapping. It studies different types of sensor configurations, but focuses on the uniform linear and circular arrays-the most useful configurations for understanding array systems in practice. Unique in its approach, depth, and quantitative focus, Sensor Array Signal Processing offers the ideal starting point and an outstanding reference for those working or interested in medical imaging, astronomy, radar, communications, sonar, seismology-any field that studies propagating wavefields. Its clear exposition, numerical examples, exercises, and wide applicability impart a broad picture of array signal processing unmatched by any other text on the market.




Array Signal Processing


Book Description

This book is intended as an introduction to array signal process ing, where the principal objectives are to make use of the available multiple sensor information in an efficient manner to detect and possi bly estimate the signals and their parameters present in the scene. The advantages of using an array in place of a single receiver have extended its applicability into many fields including radar, sonar, com munications, astronomy, seismology and ultrasonics. The primary emphasis here is to focus on the detection problem and the estimation problem from a signal processing viewpoint. Most of the contents are derived from readily available sources in the literature, although a cer tain amount of original material has been included. This book can be used both as a graduate textbook and as a reference book for engineers and researchers. The material presented here can be readily understood by readers having a back ground in basic probability theory and stochastic processes. A prelim inary course in detection and estimation theory, though not essential, may make the reading easy. In fact this book can be used in a one semester course following probability theory and stochastic processes.




Wireless, Networking, Radar, Sensor Array Processing, and Nonlinear Signal Processing


Book Description

Now available in a three-volume set, this updated and expanded edition of the bestselling The Digital Signal Processing Handbook continues to provide the engineering community with authoritative coverage of the fundamental and specialized aspects of information-bearing signals in digital form. Encompassing essential background material, technical details, standards, and software, the second edition reflects cutting-edge information on signal processing algorithms and protocols related to speech, audio, multimedia, and video processing technology associated with standards ranging from WiMax to MP3 audio, low-power/high-performance DSPs, color image processing, and chips on video. Drawing on the experience of leading engineers, researchers, and scholars, the three-volume set contains 29 new chapters that address multimedia and Internet technologies, tomography, radar systems, architecture, standards, and future applications in speech, acoustics, video, radar, and telecommunications. This volume, Wireless, Networking, Radar, Sensor Array Processing, and Nonlinear Signal Processing, provides complete coverage of the foundations of signal processing related to wireless, radar, space–time coding, and mobile communications, together with associated applications to networking, storage, and communications.




Digital Signal Processing Handbook on CD-ROM


Book Description

A best-seller in its print version, this comprehensive CD-ROM reference contains unique, fully searchable coverage of all major topics in digital signal processing (DSP), establishing an invaluable, time-saving resource for the engineering community. Its unique and broad scope includes contributions from all DSP specialties, including: telecommunications, computer engineering, acoustics, seismic data analysis, DSP software and hardware, image and video processing, remote sensing, multimedia applications, medical technology, radar and sonar applications




Signal Processing for Intelligent Sensor Systems with MATLAB®


Book Description

Signal Processing for Intelligent Sensors with MATLAB®, Second Edition once again presents the key topics and salient information required for sensor design and application. Organized to make it accessible to engineers in school as well as those practicing in the field, this reference explores a broad array of subjects and is divided into sections: Fundamentals of Digital Signal Processing, Frequency Domain Processing, Adaptive System Identification and Filtering, Wavenumber Sensor Systems, and Signal Processing Applications. Taking an informal, application-based approach and using a tone that is more engineer-to-engineer than professor-to-student, this revamped second edition enhances many of the features that made the original so popular. This includes retention of key algorithms and development methodologies and applications, which are creatively grouped in a way that differs from most comparable texts, to optimize their use. New for the Second Edition: Inclusion of more solved problems Web access to a large collection of MATLAB® scripts used to support data graphs presented throughout the book Additional coverage of more audio engineering, transducers, and sensor networking technology A new chapter on Digital Audio processing reflects a growing interest in digital surround sound (5.1 audio) techniques for entertainment, home theaters, and virtual reality systems New sections on sensor networking, use of meta-data architectures using XML, and agent-based automated data mining and control Serving dual roles as both a learning resource and a field reference on sensor system networks, this book progressively reveals digestible nuggets of critical information to help readers quickly master presented algorithms and adapt them to meet their requirements. It illustrates the current trend toward agile development of web services for wide area sensor networking and intelligent processing in the sensor system networks that are employed in homeland security, business, and environmental and demographic information systems.