Sensor Technology Handbook


Book Description

Sensor fundamentals -- Application considerations -- Measurement issues and criteria -- Sensor signal conditioning -- Acceleration, shock and vibration sensors -- Biosensors -- Chemical sensors -- Capacitive and inductive displacement sensors -- Electromagnetism in sensing -- Flow and level sensors -- Force, load and weight sensors -- Humidity sensors -- Machinery vibration monitoring sensors -- Optical and radiation sensors -- Position and motion sensors -- Pressure sensors -- Sensors for mechanical shock -- Test and measurement microphones -- Strain gages -- Temperature sensors -- Nanotechnology-enabled sensors -- Wireless sensor networks: principles and applications.




Sensor Technologies


Book Description

Sensor Technologies: Healthcare, Wellness and Environmental Applications explores the key aspects of sensor technologies, covering wired, wireless, and discrete sensors for the specific application domains of healthcare, wellness and environmental sensing. It discusses the social, regulatory, and design considerations specific to these domains. The book provides an application-based approach using real-world examples to illustrate the application of sensor technologies in a practical and experiential manner. The book guides the reader from the formulation of the research question, through the design and validation process, to the deployment and management phase of sensor applications. The processes and examples used in the book are primarily based on research carried out by Intel or joint academic research programs. “Sensor Technologies: Healthcare, Wellness and Environmental Applications provides an extensive overview of sensing technologies and their applications in healthcare, wellness, and environmental monitoring. From sensor hardware to system applications and case studies, this book gives readers an in-depth understanding of the technologies and how they can be applied. I would highly recommend it to students or researchers who are interested in wireless sensing technologies and the associated applications.” Dr. Benny Lo Lecturer, The Hamlyn Centre, Imperial College of London “This timely addition to the literature on sensors covers the broad complexity of sensing, sensor types, and the vast range of existing and emerging applications in a very clearly written and accessible manner. It is particularly good at capturing the exciting possibilities that will occur as sensor networks merge with cloud-based ‘big data’ analytics to provide a host of new applications that will impact directly on the individual in ways we cannot fully predict at present. It really brings this home through the use of carefully chosen case studies that bring the overwhelming concept of 'big data' down to the personal level of individual life and health.” Dermot Diamond Director, National Centre for Sensor Research, Principal Investigator, CLARITY Centre for Sensor Web Technologies, Dublin City University "Sensor Technologies: Healthcare, Wellness and Environmental Applications takes the reader on an end-to-end journey of sensor technologies, covering the fundamentals from an engineering perspective, introducing how the data gleaned can be both processed and visualized, in addition to offering exemplar case studies in a number of application domains. It is a must-read for those studying any undergraduate course that involves sensor technologies. It also provides a thorough foundation for those involved in the research and development of applied sensor systems. I highly recommend it to any engineer who wishes to broaden their knowledge in this area!" Chris Nugent Professor of Biomedical Engineering, University of Ulster




Expanding the Vision of Sensor Materials


Book Description

Advances in materials science and engineering have paved the way for the development of new and more capable sensors. Drawing upon case studies from manufacturing and structural monitoring and involving chemical and long wave-length infrared sensors, this book suggests an approach that frames the relevant technical issues in such a way as to expedite the consideration of new and novel sensor materials. It enables a multidisciplinary approach for identifying opportunities and making realistic assessments of technical risk and could be used to guide relevant research and development in sensor technologies.




How to Do Things with Sensors


Book Description

An investigation of how-to guides for sensor technologies Sensors are increasingly common within citizen-sensing and DIY projects, but these devices often require the use of a how-to guide. From online instructional videos for troubleshooting sensor installations to handbooks for using and abusing the Internet of Things, the how-to genres and formats of digital instruction continue to expand and develop. As the how-to proliferates, and instructions unfold through multiple aspects of technoscientific practices, Jennifer Gabrys asks why the how-to has become one of the prevailing genres of the digital. How to Do Things with Sensors explores the ways in which things are made do-able with and through sensors and further considers how worlds are made sense-able and actionable through the instructional mode of citizen-sensing projects. Forerunners: Ideas First Short books of thought-in-process scholarship, where intense analysis, questioning, and speculation take the lead




Fundamentals of Sensors for Engineering and Science


Book Description

Fundamentals of Sensors for Engineering and Science is a practical analysis of sensors and measurement, designed to help readers make informed decisions when selecting an appropriate sensor for a given application. Spurred by a growing demand for information on the evolution of modern sensors, this book evaluates current applications to illustrate




Biomedical Sensors and Measurement


Book Description

"Biomedical Sensors and Measurement" is an interdisciplinary book combining electronics with biology and medicine. It gives an overview of the concept and principle of biomedical sensors and measurement. First, the basic theory and technology are explained, followed by details of the physical sensors, chemical sensors, biosensors and their typical applications in biomedicine. Furthermore, the interface technology of the sensors and the typical measurement systems is presented. The large amount of vivid and specific figures and formulas will help to deepen the understanding of the fundamental and new applications involving biomedical sensors and measurement technology. The book is intended for biomedical engineers, medical physicists and other researchers and professionals in biomedicine-related specialties, especially interdisciplinary studies. Prof. Ping Wang and Dr. Qingjun Liu both work at the Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, China.




Handbook of Modern Sensors


Book Description

Seven years have passed since the publication of the previous edition of this book. During that time, sensor technologies have made a remarkable leap forward. The sensitivity of the sensors became higher, the dimensions became smaller, the sel- tivity became better, and the prices became lower. What have not changed are the fundamental principles of the sensor design. They are still governed by the laws of Nature. Arguably one of the greatest geniuses who ever lived, Leonardo Da Vinci, had his own peculiar way of praying. He was saying, “Oh Lord, thanks for Thou do not violate your own laws. ” It is comforting indeed that the laws of Nature do not change as time goes by; it is just our appreciation of them that is being re?ned. Thus, this new edition examines the same good old laws of Nature that are employed in the designs of various sensors. This has not changed much since the previous edition. Yet, the sections that describe the practical designs are revised substantially. Recent ideas and developments have been added, and less important and nonessential designs were dropped. Probably the most dramatic recent progress in the sensor technologies relates to wide use of MEMS and MEOMS (micro-electro-mechanical systems and micro-electro-opto-mechanical systems). These are examined in this new edition with greater detail. This book is about devices commonly called sensors. The invention of a - croprocessor has brought highly sophisticated instruments into our everyday lives.




Advances in Modern Sensors


Book Description

Sensors are integral to modern living and are found in a huge number of applications in science, engineering and technology thus it is critical for scientists and technologists to understand the physical principles behind sensor types as well as their characteristics, applications, and how they can be suitably employed in sensor technologies. Whilst there exists a vast literature on the physics and characteristics of traditional sensors, this book provides a broad overview of the range of sensor technologies and attendant topics needed to optimise and utilise these devices in the modern world. Not only reviewing sensors by classification, the book encompasses the physics, design characteristics, simulation and interface electronics, and it includes case studies, future challenges and several other aspects of wider sensor technology to provide an overview of modern sensors and their applications. The broad scope will appeal to industrial and academic researchers and application engineers, especially those developing and implementing real-time hardware implementations employing smart sensors for emerging applications. Key Features Features a broad review of sensor types, including MEMS, wearable and smart sensors Presents application of modern sensors and emerging research directions Incorporates case studies Reviews wider associated technologies such as simulation, materials and interface electronics Interdisciplinary appeal making the text suitable for industrial and academic researchers as well as application engineers




Wearable Sensors


Book Description

Written by industry experts, this book aims to provide you with an understanding of how to design and work with wearable sensors. Together these insights provide the first single source of information on wearable sensors that would be a valuable addition to the library of any engineer interested in this field.Wearable Sensors covers a wide variety of topics associated with the development and application of various wearable sensors. It also provides an overview and coherent summary of many aspects of current wearable sensor technology.Both industry professionals and academic researchers will benefit from this comprehensive reference which contains the most up-to-date information on the advancement of lightweight hardware, energy harvesting, signal processing, and wireless communications and networks. Practical problems with smart fabrics, biomonitoring and health informatics are all addressed, plus end user centric design, ethical and safety issues. - Provides the first comprehensive resource of all currently used wearable devices in an accessible and structured manner - Helps engineers manufacture wearable devices with information on current technologies, with a focus on end user needs and recycling requirements - Combines the expertise of professionals and academics in one practical and applied source




Sensing Machines


Book Description

How we are tracked, surveilled, tantalized, and seduced by machines ranging from smart watches and Roombas to immersive art installations. Sensing machines are everywhere in our world. As we move through the day, electronic sensors and computers adjust our thermostats, guide our Roombas, count our steps, change the orientation of an image when we rotate our phones. There are more of these electronic devices in the world than there are people—in 2020, thirty to fifty billion of them (versus 7.8 billion people), with more than a trillion expected in the next decade. In Sensing Machines, Chris Salter examines how we are tracked, surveilled, tantalized, and seduced by machines ranging from smart watches and mood trackers to massive immersive art installations. Salter, an artist/scholar who has worked with sensors and computers for more than twenty years, explains that the quantification of bodies, senses, and experience did not begin with the surveillance capitalism practiced by Facebook, Amazon, Netflix, and Google but can be traced back to mathematical and statistical techniques of the nineteenth century. He describes the emergence of the “sensed self,” investigating how sensor technology has been deployed in music and gaming, programmable and immersive art environments, driving, and even eating, with e-tongues and e-noses that can taste and smell for us. Sensing technology turns our experience into data; but Salter’s story isn’t just about what these machines want from us, but what we want from them—new sensations, the thrill of the uncanny, and magic that will transport us from our daily grind.