Separate and Joint Continuity


Book Description

Separate and Joint Continuity presents and summarises the main ideas and theorems that have been developed on this topic, which lies at the interface between General Topology and Functional Analysis (and the geometry of Banach spaces in particular). The book offers detailed, self-contained proofs of many of the key results. Although the development of this area has now slowed to a point where an authoritative book can be written, many important and significant problems remain open, and it is hoped that this book may serve as a springboard for future and emerging researchers into this area. Furthermore, it is the strong belief of the authors that this area of research is ripe for exploitation. That is to say, it is their belief that many of the results contained in this monograph can, and should be, applied to other areas of mathematics. It is hoped that this monograph may provide an easily accessible entry point to the main results on separate and joint continuity for mathematicians who are not directly working in this field, but who may be able to exploit some of the deep results that have been developed over the past 125 years. Features Provides detailed, self-contained proofs of many of the key results in the area Suitable for researchers and postgraduates in topology and functional analysis Is the first book to offer a detailed and up-to-date summary of the main ideas and theorems on this topic




USCO and Quasicontinuous Mappings


Book Description

This book presents two natural generalizations of continuous mappings, namely usco and quasicontinuous mappings. The first class considers set-valued mappings, the second class relaxes the definition of continuity. Both these topological concepts stem naturally from basic mathematical considerations and have numerous applications that are covered in detail.




Open Problems in Topology II


Book Description

This volume is a collection of surveys of research problems in topology and its applications. The topics covered include general topology, set-theoretic topology, continuum theory, topological algebra, dynamical systems, computational topology and functional analysis.* New surveys of research problems in topology* New perspectives on classic problems* Representative surveys of research groups from all around the world




A Cp-Theory Problem Book


Book Description

This fourth volume in Vladimir Tkachuk's series on Cp-theory gives reasonably complete coverage of the theory of functional equivalencies through 500 carefully selected problems and exercises. By systematically introducing each of the major topics of Cp-theory, the book is intended to bring a dedicated reader from basic topological principles to the frontiers of modern research. The book presents complete and up-to-date information on the preservation of topological properties by homeomorphisms of function spaces. An exhaustive theory of t-equivalent, u-equivalent and l-equivalent spaces is developed from scratch. The reader will also find introductions to the theory of uniform spaces, the theory of locally convex spaces, as well as the theory of inverse systems and dimension theory. Moreover, the inclusion of Kolmogorov's solution of Hilbert's Problem 13 is included as it is needed for the presentation of the theory of l-equivalent spaces. This volume contains the most important classical results on functional equivalencies, in particular, Gul'ko and Khmyleva's example of non-preservation of compactness by t-equivalence, Okunev's method of constructing l-equivalent spaces and the theorem of Marciszewski and Pelant on u-invariance of absolute Borel sets.







Mathematical Reviews


Book Description




Recent Progress in General Topology


Book Description

These papers survey the developments in General Topology and the applications of it which have taken place since the mid 1980s. The book may be regarded as an update of some of the papers in the Handbook of Set-Theoretic Topology (eds. Kunen/Vaughan, North-Holland, 1984), which gives an almost complete picture of the state of the art of Set Theoretic Topology before 1984. In the present volume several important developments are surveyed that surfaced in the period 1984-1991. This volume may also be regarded as a partial update of Open Problems in Topology (eds. van Mill/Reed, North-Holland, 1990). Solutions to some of the original 1100 open problems are discussed and new problems are posed.




Topology


Book Description




Functional Equations in Several Variables


Book Description

This treatise deals with modern theory of functional equations in several variables and their applications to mathematics, information theory, and the natural, behavioural and social sciences. The authors have chosen to emphasize applications, though not at the expense of theory, so they have kept the prerequisites to a minimum.




The Convenient Setting of Global Analysis


Book Description

This book lays the foundations of differential calculus in infinite dimensions and discusses those applications in infinite dimensional differential geometry and global analysis not involving Sobolev completions and fixed point theory. The approach is simple: a mapping is called smooth if it maps smooth curves to smooth curves. Up to Fr‚chet spaces, this notion of smoothness coincides with all known reasonable concepts. In the same spirit, calculus of holomorphic mappings (including Hartogs' theorem and holomorphic uniform boundedness theorems) and calculus of real analytic mappings are developed. Existence of smooth partitions of unity, the foundations of manifold theory in infinite dimensions, the relation between tangent vectors and derivations, and differential forms are discussed thoroughly. Special emphasis is given to the notion of regular infinite dimensional Lie groups. Many applications of this theory are included: manifolds of smooth mappings, groups of diffeomorphisms, geodesics on spaces of Riemannian metrics, direct limit manifolds, perturbation theory of operators, and differentiability questions of infinite dimensional representations.