Separation Technologies for the Industries of the Future


Book Description

Separation processes—or processes that use physical, chemical, or electrical forces to isolate or concentrate selected constituents of a mixture—are essential to the chemical, petroleum refining, and materials processing industries. In this volume, an expert panel reviews the separation process needs of seven industries and identifies technologies that hold promise for meeting these needs, as well as key technologies that could enable separations. In addition, the book recommends criteria for the selection of separations research projects for the Department of Energy's Office of Industrial Technology.







Advanced Low-Cost Separation Techniques in Interface Science


Book Description

Advanced Low-Cost Separation Techniques in Interface Science, Volume 30 helps scientists and researchers in academia and industry gain expert knowledge on how to use separation techniques at minimal cost and energy usage. It handles a broad range of highly relevant topics, including modern flotation techniques, low-cost materials in liquid-and gas-phase adsorption, new trends in molecular imprinting, graphenes in separation, nanobubbles and biopolymers in interface science, the reuse of biomaterials, green techniques for wastewaters, and modeling in environmental interfaces. The book shows that these techniques can be both attractive for both research and industrial purposes. It is intended for chemical engineers working in wastewater treatment industries, membrane industries, pharmaceutical industries, textile or tanneries industries, hybrid-topic industries and energy industries.




Particle Separation Techniques


Book Description

Particle Separation Techniques: Fundamentals, Instrumentation, and Selected Applications presents the latest research in the field of particle separation methods. This edited book authored by subject specialists is logically organized in sections, grouping the separation techniques according to their preparative or analytical purposes and the particle type. Along with the traditional and classical separation methods suitable for micronic particles, an update survey of techniques appropriate for nanoparticle characterization is presented. This book fills the gap in the literature of particle suspension analysis of a synthetic but comprehensive manual, helping the reader to identify and apply selected techniques.It provides an overview of the techniques available to a reader who is not an expert on particle separation yet about to enter the field, design an experiment, or buy an instrument for his/her new lab. - Presents a resource that is ideal for anyone preparing samples across a variety of fields, including pharmaceuticals, food science, pollution analysis and control, agricultural products, and more - Includes real case examples discussed by leading experts in the field - Provides chapters that contain a unique, common table that summarizes points-of-strength and the weaknesses of each technique




A Research Agenda for Transforming Separation Science


Book Description

Separation science plays a critical role in maintaining our standard of living and quality of life. Many industrial processes and general necessities such as chemicals, medicines, clean water, safe food, and energy sources rely on chemical separations. However, the process of chemical separations is often overlooked during product development and this has led to inefficiency, unnecessary waste, and lack of consensus among chemists and engineers. A reevaluation of system design, establishment of standards, and an increased focus on the advancement of separation science are imperative in supporting increased efficiency, continued U.S. manufacturing competitiveness, and public welfare. A Research Agenda for Transforming Separation Science explores developments in the industry since the 1987 National Academies report, Separation and Purification: Critical Needs and Opportunities. Many needs stated in the original report remain today, in addition to a variety of new challenges due to improved detection limits, advances in medicine, and a recent emphasis on sustainability and environmental stewardship. This report examines emerging chemical separation technologies, relevant developments in intersecting disciplines, and gaps in existing research, and provides recommendations for the application of improved separation science technologies and processes. This research serves as a foundation for transforming separation science, which could reduce global energy use, improve human and environmental health, and advance more efficient practices in various industries.




Separation Techniques Applied to Omics Sciences


Book Description

This book covers liquid chromatography, gas chromatography and capillary electrophoresis, the three main separation techniques lately available, applied to key omic sciences, such as genomics, proteomics, metabolomics and foodomics. The fundamentals of each technique are not covered herein. Instead, the recent advances in such techniques are presented focusing on the application to omics analyses and unique aspects in each case. This volume intends to offer wide ranging options available to researchers on omics sciences, and how to integrate them in order to achieve the comprehension of a biological system as a whole. Omic sciences have been of ultimate importance to comprehend the complex biochemical reactions and related events that occurs upon a biological system. The classical central dogma of molecular biology, which states that genetic information flows unidirectionally from DNA to RNA and then to proteins, has been gradually replaced by the systems biology approach. This book presents a multidisciplinary approach that explains the biological system as a whole, where the entire organism is influenced by a variety of internal events as well as by the environment, showing that each level of the biological information flux may influence the previous or the subsequent one.




Carbohydrate Analysis by Modern Liquid Phase Separation Techniques


Book Description

Carbohydrate Analysis by Modern Liquid Phase Separation Techniques, Second Edition, presents readers with the various principles of modern liquid phase separation techniques and their contributions to the analysis of complex carbohydrates and glycoconjugates. In a selection of all-new chapters, this fully updated volume covers each technique in detail. The book aims to help analysts solve any of the many practical problems they may face in tackling the analysis of carbohydrates. In addition, it addresses current difficulties that must be resolved in carbohydrate research, thus inspiring further important technological developments to meet these challenges. This is an essential resource for anyone seeking a broad view of the science of carbohydrates and separation techniques. - Covers the basic principles of modern liquid phase separation techniques, along with their applications - Compiles up-to-date information on the field of carbohydrate analysis, along with updates on separation science - Focuses on problems currently faced in carbohydrate analysis and the solutions necessary for further progress




Separation Techniques in Clinical Chemistry


Book Description

This reference examines innovations in separation science for improved sensitivity and cost-efficiency, increased speed, higher sample throughput and lower solvent consumption in the assessment, evaluation, and validation of emerging drug compounds. It investigates breakthroughs in sample pretreatment, HPLC, mass spectrometry, capillary electrophor




Industrial Separation Processes


Book Description

Separation processes on an industrial scale account for well over half of the capital and operating costs in the chemical industry. Knowledge of these processes is key for every student of chemical or process engineering. This book is ideally suited to university teaching, thanks to its wealth of exercises and solutions. The second edition boasts an even greater number of applied examples and case studies as well as references for further reading.




Advanced Separation Techniques for Nuclear Fuel Reprocessing and Radioactive Waste Treatment


Book Description

Advanced separations technology is key to closing the nuclear fuel cycle and relieving future generations from the burden of radioactive waste produced by the nuclear power industry. Nuclear fuel reprocessing techniques not only allow for recycling of useful fuel components for further power generation, but by also separating out the actinides, lanthanides and other fission products produced by the nuclear reaction, the residual radioactive waste can be minimised. Indeed, the future of the industry relies on the advancement of separation and transmutation technology to ensure environmental protection, criticality-safety and non-proliferation (i.e., security) of radioactive materials by reducing their long-term radiological hazard.Advanced separation techniques for nuclear fuel reprocessing and radioactive waste treatment provides a comprehensive and timely reference on nuclear fuel reprocessing and radioactive waste treatment. Part one covers the fundamental chemistry, engineering and safety of radioactive materials separations processes in the nuclear fuel cycle, including coverage of advanced aqueous separations engineering, as well as on-line monitoring for process control and safeguards technology. Part two critically reviews the development and application of separation and extraction processes for nuclear fuel reprocessing and radioactive waste treatment. The section includes discussions of advanced PUREX processes, the UREX+ concept, fission product separations, and combined systems for simultaneous radionuclide extraction. Part three details emerging and innovative treatment techniques, initially reviewing pyrochemical processes and engineering, highly selective compounds for solvent extraction, and developments in partitioning and transmutation processes that aim to close the nuclear fuel cycle. The book concludes with other advanced techniques such as solid phase extraction, supercritical fluid and ionic liquid extraction, and biological treatment processes.With its distinguished international team of contributors, Advanced separation techniques for nuclear fuel reprocessing and radioactive waste treatment is a standard reference for all nuclear waste management and nuclear safety professionals, radiochemists, academics and researchers in this field. - A comprehensive and timely reference on nuclear fuel reprocessing and radioactive waste treatment - Details emerging and innovative treatment techniques, reviewing pyrochemical processes and engineering, as well as highly selective compounds for solvent extraction - Discusses the development and application of separation and extraction processes for nuclear fuel reprocessing and radioactive waste treatment