Sequential Analysis and Optimal Design


Book Description

An exploration of the interrelated fields of design of experiments and sequential analysis with emphasis on the nature of theoretical statistics and how this relates to the philosophy and practice of statistics.




Sequential Analysis and Optimal Design


Book Description

An exploration of the interrelated fields of design of experiments and sequential analysis with emphasis on the nature of theoretical statistics and how this relates to the philosophy and practice of statistics.




Nonlinear Renewal Theory in Sequential Analysis


Book Description

The global approach to nonlinear renewal theory is integrated with the author's own local approach. Both the theory and its applications are placed in perspective by including a discussion of the linear renewal theorem and its applications to the sequential probability ratio test. Applications to repeated significance tests, to tests with power one, and to sequential estimation are also included. The monograph is self-contained for readers with a working knowledge of measure-theoretic probability and intermediate statistical theory.




Optimal Design


Book Description

Prior to the 1970's a substantial literature had accumulated on the theory of optimal design, particularly of optimal linear regression design. To a certain extent the study of the subject had been piecemeal, different criteria of optimality having been studied separately. Also to a certain extent the topic was regarded as being largely of theoretical interest and as having little value for the practising statistician. However during this decade two significant developments occurred. It was observed that the various different optimality criteria had several mathematical properties in common; and general algorithms for constructing optimal design measures were developed. From the first of these there emerged a general theory of remarkable simplicity and the second at least raised the possibility that the theory would have more practical value. With respect to the second point there does remain a limiting factor as far as designs that are optimal for parameter estimation are concerned, and this is that the theory assumes that the model be collected is known a priori. This of course underlying data to is seldom the case in practice and it often happens that designs which are optimal for parameter estimation allow no possibility of model validation. For this reason the theory of design for parameter estimation may well have to be combined with a theory of model validation before its practical potential is fully realized. Nevertheless discussion in this monograph is limited to the theory of design optimal for parameter estimation.




Optimal Experimental Design with R


Book Description

Experimental design is often overlooked in the literature of applied and mathematical statistics: statistics is taught and understood as merely a collection of methods for analyzing data. Consequently, experimenters seldom think about optimal design, including prerequisites such as the necessary sample size needed for a precise answer for an experi




Sequential Analysis


Book Description

The first to solve the general problem of sequential tests of statistical hypotheses, the author of this text explains his revolutionary theory of the sequential probability ratio test and its applications. 1947 edition.




Handbook of Data Analysis


Book Description

′This book provides an excellent reference guide to basic theoretical arguments, practical quantitative techniques and the methodologies that the majority of social science researchers are likely to require for postgraduate study and beyond′ - Environment and Planning ′The book provides researchers with guidance in, and examples of, both quantitative and qualitative modes of analysis, written by leading practitioners in the field. The editors give a persuasive account of the commonalities of purpose that exist across both modes, as well as demonstrating a keen awareness of the different things that each offers the practising researcher′ - Clive Seale, Brunel University ′With the appearance of this handbook, data analysts no longer have to consult dozens of disparate publications to carry out their work. The essential tools for an intelligent telling of the data story are offered here, in thirty chapters written by recognized experts. ′ - Michael Lewis-Beck, F Wendell Miller Distinguished Professor of Political Science, University of Iowa ′This is an excellent guide to current issues in the analysis of social science data. I recommend it to anyone who is looking for authoritative introductions to the state of the art. Each chapter offers a comprehensive review and an extensive bibliography and will be invaluable to researchers wanting to update themselves about modern developments′ - Professor Nigel Gilbert, Pro Vice-Chancellor and Professor of Sociology, University of Surrey This is a book that will rapidly be recognized as the bible for social researchers. It provides a first-class, reliable guide to the basic issues in data analysis, such as the construction of variables, the characterization of distributions and the notions of inference. Scholars and students can turn to it for teaching and applied needs with confidence. The book also seeks to enhance debate in the field by tackling more advanced topics such as models of change, causality, panel models and network analysis. Specialists will find much food for thought in these chapters. A distinctive feature of the book is the breadth of coverage. No other book provides a better one-stop survey of the field of data analysis. In 30 specially commissioned chapters the editors aim to encourage readers to develop an appreciation of the range of analytic options available, so they can choose a research problem and then develop a suitable approach to data analysis.




The Design and Analysis of Sequential Clinical Trials


Book Description

This book details all aspects of sequential clinical trials from preliminary planning, through the monitoring of the trial, to the final analysis of the results.




Principles of Optimal Design


Book Description

Principles of Optimal Design puts the concept of optimal design on a rigorous foundation and demonstrates the intimate relationship between the mathematical model that describes a design and the solution methods that optimize it. Since the first edition was published, computers have become ever more powerful, design engineers are tackling more complex systems, and the term optimization is now routinely used to denote a design process with increased speed and quality. This second edition takes account of these developments and brings the original text thoroughly up to date. The book now includes a discussion of trust region and convex approximation algorithms. A new chapter focuses on how to construct optimal design models. Three new case studies illustrate the creation of optimization models. The final chapter on optimization practice has been expanded to include computation of derivatives, interpretation of algorithmic results, and selection of algorithms and software. Both students and practising engineers will find this book a valuable resource for design project work.




Sequential Experimentation in Clinical Trials


Book Description

Sequential Experimentation in Clinical Trials: Design and Analysis is developed from decades of work in research groups, statistical pedagogy, and workshop participation. Different parts of the book can be used for short courses on clinical trials, translational medical research, and sequential experimentation. The authors have successfully used the book to teach innovative clinical trial designs and statistical methods for Statistics Ph.D. students at Stanford University. There are additional online supplements for the book that include chapter-specific exercises and information. Sequential Experimentation in Clinical Trials: Design and Analysis covers the much broader subject of sequential experimentation that includes group sequential and adaptive designs of Phase II and III clinical trials, which have attracted much attention in the past three decades. In particular, the broad scope of design and analysis problems in sequential experimentation clearly requires a wide range of statistical methods and models from nonlinear regression analysis, experimental design, dynamic programming, survival analysis, resampling, and likelihood and Bayesian inference. The background material in these building blocks is summarized in Chapter 2 and Chapter 3 and certain sections in Chapter 6 and Chapter 7. Besides group sequential tests and adaptive designs, the book also introduces sequential change-point detection methods in Chapter 5 in connection with pharmacovigilance and public health surveillance. Together with dynamic programming and approximate dynamic programming in Chapter 3, the book therefore covers all basic topics for a graduate course in sequential analysis designs.