Seriation of Multivariate Observations Through Similarities


Book Description

For certain types of problems in multivariate data reduction, seriation and scaling may be reasonable approaches. Given a collection of n objects, seriation techniques try to order these objects on a one-dimensional scale in the sense of assigning a rank from one to n to each object. Scaling techniques attempt to do more by assigning a numerical value to each object so that not only is order achieved but also some quantitative measure of relative closeness is computed. Similarity functions are employed to measure the 'closeness' between pairs of vectors. Two general approaches are considered encompassing five methods. Lastly a section is devoted to several estimation problems that arise from considering the similarities between pairs of vectors as random variables having certain underlying mean and covariance structures.




Scientific and Technical Aerospace Reports


Book Description

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.




Advances in Archaeological Method and Theory


Book Description

Selections for Students from Volumes 1-4




Multivariate Observations


Book Description

WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "In recent years many monographs have been published on specialized aspects of multivariate data-analysis–on cluster analysis, multidimensional scaling, correspondence analysis, developments of discriminant analysis, graphical methods, classification, and so on. This book is an attempt to review these newer methods together with the classical theory. . . . This one merits two cheers." –J. C. Gower, Department of Statistics Rothamsted Experimental Station, Harpenden, U.K. Review in Biometrics, June 1987 Multivariate Observations is a comprehensive sourcebook that treats data-oriented techniques as well as classical methods. Emphasis is on principles rather than mathematical detail, and coverage ranges from the practical problems of graphically representing high-dimensional data to the theoretical problems relating to matrices of random variables. Each chapter serves as a self-contained survey of a specific topic. The book includes many numerical examples and over 1,100 references.







Introduction to Multivariate Analysis


Book Description

This book provides an introduction to the analysis of multivariate data.It describes multivariate probability distributions, the preliminary analysisof a large -scale set of data, princ iple component and factor analysis,traditional normal theory material, as well as multidimensional scaling andcluster analysis.Introduction to Multivariate Analysis provides a reasonable blend oftheory and practice. Enough theory is given to introduce the concepts andto make the topics mathematically interesting. In addition the authors discussthe use (and misuse) of the techniques in pra ctice and present appropriatereal-life examples from a variety of areas includ ing agricultural research,soc iology and crim inology. The book should be suitable both for researchworkers and as a text for students taking a course on multivariate analysis.







Statistics for Censored Environmental Data Using Minitab and R


Book Description

Praise for the First Edition " . . . an excellent addition to an upper-level undergraduate course on environmental statistics, and . . . a 'must-have' desk reference for environmental practitioners dealing with censored datasets." —Vadose Zone Journal Statistics for Censored Environmental Data Using Minitab® and R, Second Edition introduces and explains methods for analyzing and interpreting censored data in the environmental sciences. Adapting survival analysis techniques from other fields, the book translates well-established methods from other disciplines into new solutions for environmental studies. This new edition applies methods of survival analysis, including methods for interval-censored data to the interpretation of low-level contaminants in environmental sciences and occupational health. Now incorporating the freely available R software as well as Minitab® into the discussed analyses, the book features newly developed and updated material including: A new chapter on multivariate methods for censored data Use of interval-censored methods for treating true nondetects as lower than and separate from values between the detection and quantitation limits ("remarked data") A section on summing data with nondetects A newly written introduction that discusses invasive data, showing why substitution methods fail Expanded coverage of graphical methods for censored data The author writes in a style that focuses on applications rather than derivations, with chapters organized by key objectives such as computing intervals, comparing groups, and correlation. Examples accompany each procedure, utilizing real-world data that can be analyzed using the Minitab® and R software macros available on the book's related website, and extensive references direct readers to authoritative literature from the environmental sciences. Statistics for Censored Environmental Data Using Minitab® and R, Second Edition is an excellent book for courses on environmental statistics at the upper-undergraduate and graduate levels. The book also serves as a valuable reference for??environmental professionals, biologists, and ecologists who focus on the water sciences, air quality, and soil science.




Multivariate Humanities


Book Description

This case study-based textbook in multivariate analysis for advanced students in the humanities emphasizes descriptive, exploratory analyses of various types of datasets from a wide range of sub-disciplines, promoting the use of multivariate analysis and illustrating its wide applicability. Fields featured include, but are not limited to, historical agriculture, arts (music and painting), theology, and stylometrics (authorship issues). Most analyses are based on existing data, earlier analysed in published peer-reviewed papers. Four preliminary methodological and statistical chapters provide general technical background to the case studies. The multivariate statistical methods presented and illustrated include data inspection, several varieties of principal component analysis, correspondence analysis, multidimensional scaling, cluster analysis, regression analysis, discriminant analysis, and three-mode analysis. The bulk of the text is taken up by 14 case studies that lean heavily on graphical representations of statistical information such as biplots, using descriptive statistical techniques to support substantive conclusions. Each study features a description of the substantive background to the data, followed by discussion of appropriate multivariate techniques, and detailed results interpreted through graphical illustrations. Each study is concluded with a conceptual summary. Datasets in SPSS are included online.




Quantitative Methods in Archaeology Using R


Book Description

Quantitative Methods in Archaeology Using R is the first hands-on guide to using the R statistical computing system written specifically for archaeologists. It shows how to use the system to analyze many types of archaeological data. Part I includes tutorials on R, with applications to real archaeological data showing how to compute descriptive statistics, create tables, and produce a wide variety of charts and graphs. Part II addresses the major multivariate approaches used by archaeologists, including multiple regression (and the generalized linear model); multiple analysis of variance and discriminant analysis; principal components analysis; correspondence analysis; distances and scaling; and cluster analysis. Part III covers specialized topics in archaeology, including intra-site spatial analysis, seriation, and assemblage diversity.