Perspectives on Spatial Data Analysis


Book Description

Spatial data analysis has seen explosive growth in recent years. Both in mainstream statistics and econometrics as well as in many applied ?elds, the attention to space, location, and interaction has become an important feature of scholarly work. The methodsdevelopedto dealwith problemsofspatialpatternrecognition,spatialau- correlation, and spatial heterogeneity have seen greatly increased adoption, in part due to the availability of user friendlydesktopsoftware. Throughhis theoretical and appliedwork,ArthurGetishasbeena majorcontributing?gureinthisdevelopment. In this volume, we take both a retrospective and a prospective view of the ?eld. We use the occasion of the retirement and move to emeritus status of Arthur Getis to highlight the contributions of his work. In addition, we aim to place it into perspective in light of the current state of the art and future directions in spatial data analysis. To this end, we elected to combine reprints of selected classic contributions by Getiswithchapterswrittenbykeyspatialscientists.Thesescholarswerespeci?cally invited to react to the earlier work by Getis with an eye toward assessing its impact, tracing out the evolution of related research, and to re?ect on the future broadening of spatial analysis. The organizationof the book follows four main themes in Getis’ contributions: • Spatial analysis • Pattern analysis • Local statistics • Applications For each of these themes, the chapters provide a historical perspective on early methodological developments and theoretical insights, assessments of these c- tributions in light of the current state of the art, as well as descriptions of new techniques and applications.




Spatial Context


Book Description

Many disciplines are concerned with manipulating geometric (or spatial) objects in the computer – such as geology, cartography, computer aided design (CAD), etc. – and each of these have developed their own data structures and techniques, often independently. Nevertheless, in many cases the object types and the spatial queries are similar, and this book attempts to find a common theme.




Applied Spatial Data Analysis with R


Book Description

Applied Spatial Data Analysis with R, second edition, is divided into two basic parts, the first presenting R packages, functions, classes and methods for handling spatial data. This part is of interest to users who need to access and visualise spatial data. Data import and export for many file formats for spatial data are covered in detail, as is the interface between R and the open source GRASS GIS and the handling of spatio-temporal data. The second part showcases more specialised kinds of spatial data analysis, including spatial point pattern analysis, interpolation and geostatistics, areal data analysis and disease mapping. The coverage of methods of spatial data analysis ranges from standard techniques to new developments, and the examples used are largely taken from the spatial statistics literature. All the examples can be run using R contributed packages available from the CRAN website, with code and additional data sets from the book's own website. Compared to the first edition, the second edition covers the more systematic approach towards handling spatial data in R, as well as a number of important and widely used CRAN packages that have appeared since the first edition. This book will be of interest to researchers who intend to use R to handle, visualise, and analyse spatial data. It will also be of interest to spatial data analysts who do not use R, but who are interested in practical aspects of implementing software for spatial data analysis. It is a suitable companion book for introductory spatial statistics courses and for applied methods courses in a wide range of subjects using spatial data, including human and physical geography, geographical information science and geoinformatics, the environmental sciences, ecology, public health and disease control, economics, public administration and political science. The book has a website where complete code examples, data sets, and other support material may be found: http://www.asdar-book.org. The authors have taken part in writing and maintaining software for spatial data handling and analysis with R in concert since 2003.




Spatial Analysis for the Social Sciences


Book Description

This book shows how to model the spatial interactions between actors that are at the heart of the social sciences.




Geospatial Health Data


Book Description

Geospatial health data are essential to inform public health and policy. These data can be used to quantify disease burden, understand geographic and temporal patterns, identify risk factors, and measure inequalities. Geospatial Health Data: Modeling and Visualization with R-INLA and Shiny describes spatial and spatio-temporal statistical methods and visualization techniques to analyze georeferenced health data in R. The book covers the following topics: Manipulate and transform point, areal, and raster data, Bayesian hierarchical models for disease mapping using areal and geostatistical data, Fit and interpret spatial and spatio-temporal models with the Integrated Nested Laplace Approximations (INLA) and the Stochastic Partial Differential Equation (SPDE) approaches, Create interactive and static visualizations such as disease maps and time plots, Reproducible R Markdown reports, interactive dashboards, and Shiny web applications that facilitate the communication of insights to collaborators and policy makers. The book features fully reproducible examples of several disease and environmental applications using real-world data such as malaria in The Gambia, cancer in Scotland and USA, and air pollution in Spain. Examples in the book focus on health applications, but the approaches covered are also applicable to other fields that use georeferenced data including epidemiology, ecology, demography or criminology. The book provides clear descriptions of the R code for data importing, manipulation, modeling and visualization, as well as the interpretation of the results. This ensures contents are fully reproducible and accessible for students, researchers and practitioners.




Statistics for Spatial Data


Book Description

The Wiley Classics Library consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. Spatial statistics — analyzing spatial data through statistical models — has proven exceptionally versatile, encompassing problems ranging from the microscopic to the astronomic. However, for the scientist and engineer faced only with scattered and uneven treatments of the subject in the scientific literature, learning how to make practical use of spatial statistics in day-to-day analytical work is very difficult. Designed exclusively for scientists eager to tap into the enormous potential of this analytical tool and upgrade their range of technical skills, Statistics for Spatial Data is a comprehensive, single-source guide to both the theory and applied aspects of spatial statistical methods. The hard-cover edition was hailed by Mathematical Reviews as an "excellent book which will become a basic reference." This paper-back edition of the 1993 edition, is designed to meet the many technological challenges facing the scientist and engineer. Concentrating on the three areas of geostatistical data, lattice data, and point patterns, the book sheds light on the link between data and model, revealing how design, inference, and diagnostics are an outgrowth of that link. It then explores new methods to reveal just how spatial statistical models can be used to solve important problems in a host of areas in science and engineering. Discussion includes: Exploratory spatial data analysis Spectral theory for stationary processes Spatial scale Simulation methods for spatial processes Spatial bootstrapping Statistical image analysis and remote sensing Computational aspects of model fitting Application of models to disease mapping Designed to accommodate the practical needs of the professional, it features a unified and common notation for its subject as well as many detailed examples woven into the text, numerous illustrations (including graphs that illuminate the theory discussed) and over 1,000 references. Fully balancing theory with applications, Statistics for Spatial Data, Revised Edition is an exceptionally clear guide on making optimal use of one of the ascendant analytical tools of the decade, one that has begun to capture the imagination of professionals in biology, earth science, civil, electrical, and agricultural engineering, geography, epidemiology, and ecology.




Statistical Computing with R


Book Description

Computational statistics and statistical computing are two areas that employ computational, graphical, and numerical approaches to solve statistical problems, making the versatile R language an ideal computing environment for these fields. One of the first books on these topics to feature R, Statistical Computing with R covers the traditiona




Interpolation of Spatial Data


Book Description

A summary of past work and a description of new approaches to thinking about kriging, commonly used in the prediction of a random field based on observations at some set of locations in mining, hydrology, atmospheric sciences, and geography.




Displaying Time Series, Spatial, and Space-Time Data with R


Book Description

Code and Methods for Creating High-Quality Data Graphics A data graphic is not only a static image, but it also tells a story about the data. It activates cognitive processes that are able to detect patterns and discover information not readily available with the raw data. This is particularly true for time series, spatial, and space-time datasets. Focusing on the exploration of data with visual methods, Displaying Time Series, Spatial, and Space-Time Data with R presents methods and R code for producing high-quality graphics of time series, spatial, and space-time data. Practical examples using real-world datasets help you understand how to apply the methods and code. The book illustrates how to display a dataset starting with an easy and direct approach and progressively adding improvements that involve more complexity. Each of the book’s three parts is devoted to different types of data. In each part, the chapters are grouped according to the various visualization methods or data characteristics. Web Resource Along with the main graphics from the text, the author’s website offers access to the datasets used in the examples as well as the full R code. This combination of freely available code and data enables you to practice with the methods and modify the code to suit your own needs.




An Introduction to Spatial Data Analysis


Book Description

This is a book about how ecologists can integrate remote sensing and GIS in their research. It will allow readers to get started with the application of remote sensing and to understand its potential and limitations. Using practical examples, the book covers all necessary steps from planning field campaigns to deriving ecologically relevant information through remote sensing and modelling of species distributions. An Introduction to Spatial Data Analysis introduces spatial data handling using the open source software Quantum GIS (QGIS). In addition, readers will be guided through their first steps in the R programming language. The authors explain the fundamentals of spatial data handling and analysis, empowering the reader to turn data acquired in the field into actual spatial data. Readers will learn to process and analyse spatial data of different types and interpret the data and results. After finishing this book, readers will be able to address questions such as “What is the distance to the border of the protected area?”, “Which points are located close to a road?”, “Which fraction of land cover types exist in my study area?” using different software and techniques. This book is for novice spatial data users and does not assume any prior knowledge of spatial data itself or practical experience working with such data sets. Readers will likely include student and professional ecologists, geographers and any environmental scientists or practitioners who need to collect, visualize and analyse spatial data. The software used is the widely applied open source scientific programs QGIS and R. All scripts and data sets used in the book will be provided online at book.ecosens.org. This book covers specific methods including: what to consider before collecting in situ data how to work with spatial data collected in situ the difference between raster and vector data how to acquire further vector and raster data how to create relevant environmental information how to combine and analyse in situ and remote sensing data how to create useful maps for field work and presentations how to use QGIS and R for spatial analysis how to develop analysis scripts