Service Life Prediction of Polymers and Plastics Exposed to Outdoor Weathering


Book Description

Service Life Prediction of Polymers and Plastics Exposed to Outdoor Weathering discusses plastics and polymers and their unique applications, from sealants used in construction, to polymer composites used in planes. While these materials are important enablers for advanced technologies, exposure to weather changes the very properties of plastics that make them so useful. This book reviews current research needs and provides a consensus roadmap of the scientific barriers to validated predictive models for the response of polymers and plastics to outdoor exposure. Despite extensive efforts over the past 20-30 years, testing of polymeric materials in accelerated or natural weathering conditions and the interpretation of the weathering results still require substantial improvements. This book represents the state-of-the-art in the prediction techniques available and in development. Engineers and materials scientists working in this field will be able to use the content of this book to assess the strengths and challenges of a range of different methods and approaches. Enables engineers and scientists in a range of industries to more successfully predict the durability of polymers, paints and coatings when exposed to weather Provides the latest information to help determine the sustainability of polymeric materials Reviews the current state-of-the-art in this area and identifies research needs that are followed by more detailed discussions of specific polymers and applications




Service Life Prediction of Polymers and Coatings


Book Description

Service Life Prediction of Polymers and Coatings: Enhanced Methods focuses on the cutting-edge science behind how plastic and polymer materials are modified by the effects of weathering, offering the latest advances in service life prediction methods. The chapters have been developed by experts based on their contributions as part of the 7th Service Life Prediction Meeting. The volume begins with the premise that it is possible to produce and design life predictions, also looking at how these predictions can be used. Subsequent chapters present new developments in service life prediction, examining the most important considerations in SLP design, timescales, and other major issues. The book also considers the current state of the field in terms of both accomplishments and areas that require significant research going forward. This is a highly valuable reference for engineers, designers, technicians, scientists and R&D professionals who are looking to develop materials, components or products for outdoor applications across a range of industries. The book also supports academic researchers, scientists and advanced students with an interest in service life, the effects of weathering, material degradation, failure analysis, or sustainability across the fields of plastics engineering, polymer science and materials science. Presents novel prediction techniques for plastics and polymers exposed to outdoor weathering Provides a consensus roadmap on the scientific barriers related to a validated, predictive model for the response of polymer and plastics to outdoor exposure Enables the reader to assess and compare different methods and approaches to service life prediction




Trends in Oil and Gas Corrosion Research and Technologies


Book Description

Trends in Oil and Gas Corrosion Research and Technologies: Production and Transmission delivers the most up-to-date and highly multidisciplinary reference available to identify emerging developments, fundamental mechanisms and the technologies necessary in one unified source. Starting with a brief explanation on corrosion management that also addresses today’s most challenging issues for oil and gas production and transmission operations, the book dives into the latest advances in microbiology-influenced corrosion and other corrosion threats, such as stress corrosion cracking and hydrogen damage just to name a few. In addition, it covers testing and monitoring techniques, such as molecular microbiology and online monitoring for surface and subsurface facilities, mitigation tools, including coatings, nano-packaged biocides, modeling and prediction, cathodic protection and new steels and non-metallics. Rounding out with an extensive glossary and list of abbreviations, the book equips upstream and midstream corrosion professionals in the oil and gas industry with the most advanced collection of topics and solutions to responsibly help solve today’s oil and gas corrosion challenges. Covers the latest in corrosion mitigation techniques, such as corrosion inhibitors, biocides, non-metallics, coatings, and modeling and prediction Solves knowledge gaps with the most current technology and discoveries on specific corrosion mechanisms, highlighting where future research and industry efforts should be concentrated Achieves practical and balanced understanding with a full spectrum of subjects presented from multiple academic and world-renowned contributors in the industry




Through-life Engineering Services


Book Description

Demonstrating the latest research and analysis in the area of through-life engineering services (TES), this book utilizes case studies and expert analysis from an international array of practitioners and researchers – who together represent multiple manufacturing sectors: aerospace, railway and automotive – to maximize reader insights into the field of through-life engineering services. As part of the EPSRC Centre in Through-life Engineering Services program to support the academic and industrial community, this book presents an overview of non-destructive testing techniques and applications and provides the reader with the information needed to assess degradation and possible automation of through-life engineering service activities . The latest developments in maintenance-repair-overhaul (MRO) are presented with emphasis on cleaning technologies, repair and overhaul approaches and planning and digital assistance. The impact of these technologies on sustainable enterprises is also analyzed. This book will help to support the existing TES community and will provide future studies with a strong base from which to analyze and apply techn9olgical trends to real world examples.




Service Life Prediction of Polymeric Materials


Book Description

Service Life Prediction of Polymeric Materials: Global Perspectives combines developed content derived from topics discussed in the Fourth International Symposium on Service Life Prediction (Key Largo, Florida, December 2006). This critical examination of the existing and alternative methodologies used to assess the service life of polymeric materials presents readers with the advances in accelerated and field exposure testing protocols. Written by established experts in the service life community, this volume introduces advanced methods, including high throughput and combinatorial analyses, models data collection and storage formats. Researchers and engineers involved with materials and polymer science, coatings technologists and automotive materials will find Service Life Prediction of Polymeric Materials: Global Perspectives a useful tool.




Reliability, Life Testing and the Prediction of Service Lives


Book Description

This book is intended for students and practitioners who have had a calculus-based statistics course and who have an interest in safety considerations such as reliability, strength, and duration-of-load or service life. Many persons studying statistical science will be employed professionally where the problems encountered are obscure, what should be analyzed is not clear, the appropriate assumptions are equivocal, and data are scant. In this book there is no disclosure with many of the data sets what type of investigation should be made or what assumptions are to be used.




Methodologies for Service Life Prediction of Buildings


Book Description

Presenting an analysis of different approaches for predicting the service life of buildings, this monograph discusses various statistical tools and mathematical models, some of which have rarely been applied to the field. It explores methods including deterministic, factorial, stochastic and computational models and applies these to façade claddings. The models allow (i) identification of patterns of degradation, (ii) estimation of service life, (iii) analysis of loss of performance using probability functions, and (iv) estimation of service life using a probability distribution. The final chapter discusses the differences between the different methodologies and their advantages and limitations. The authors also argue that a better understanding of the service life of buildings results in more efficient building maintenance and reduced environmental costs. It not only provides an invaluable resource to students, researchers and industry professionals interested in service life prediction and sustainable construction, but is also of interest to environmental and materials scientists.




Service Life Prediction Model for Reinforced Concrete Structures


Book Description

Reinforced concrete structures in marine environment undergo deterioration mainly due to corrosion of reinforcement. structural deterioration leads to degradation of an element to an unacceptable serviceability limit, is the service life of element. Service life therefore relates to repair cycle of the element. Defining service life is somewhat ambiguous and confusion persists, as unlike living beings, clear cut demarcation event of death, that separates itself from the life, does not exist for structures. Service life of RC structures depends on number of factors starting from the material selection to construction techniques such as exposure environment, concrete material and quality.




Concrete Durability and Service Life Planning


Book Description

This volume gathers the proceedings of the 3rd International RILEM Workshop on Concrete Durability and Service Life Planning (ConcreteLife’20), held in Haifa, Israel in January 2020. The papers cover a range of topics in concrete curing, cracking in concrete structures, corrosion of steel in concrete, thermal and hygral effects, concrete in cold climates and under high temperatures, recycling, alkali-silica reactions, chloride and sulfate attacks, marine structures, transport phenomena, durability design, microstructure of concrete and volume changes, and life cycle assessment. The book also explores future trends in research, development, and practical engineering applications related to durable concrete construction, and focuses on the design and construction of concrete structures exposed to various environmental conditions and mechanical loading. Given its scope, it offers a valuable asset for all researchers and graduate students in the areas of cement chemistry, cement production, and concrete design.




Problems in Service Life Prediction of Building and Construction Materials


Book Description

Degradation, the chemical/physical response of building and con struction materials exposed to in-service environments, must be predicted prior to their installation in structures if materials are to be effectively selected, used and maintained. These assessments of materials degradation require that methods be available to aid prediction of service life. The objectives of building materials science are a) to charac terize and categorize materials, b) to predict, preferably in a mathematical sense, material or component response including expected service life, and c) to make improvements in material response through improvements in design, formulation, processing or specification. For building and construction materials, continued progress has been made towards objective (a), but little progress has been made towards objectives (b) and (c). Of these, the mathematical prediction of service life appears to be of greater importance, because, if general approaches or models having application to a wide range of building and construction materials can be identi fied, then the categorization, selection, use and improvement of materials can proceed in a systematic manner. Researchers in advanced technologies, such as aerospace, nuclear, electronics and medicine, have apparently been more successful than researchers in building and construction technology in responding to the need for reliable predictions of service life.