Set Theory and Its Applications


Book Description

The Set Theory and Applications meeting at York University, Ontario, featured both contributed talks and a series of invited lectures on topics central to set theory and to general topology. These proceedings contain a selection of the resulting papers, mostly announcing new unpublished results.




The Foundations of Mathematics in the Theory of Sets


Book Description

This book presents a unified approach to the foundations of mathematics in the theory of sets, covering both conventional and finitary (constructive) mathematics. It is based on a philosophical, historical and mathematical analysis of the relation between the concepts of 'natural number' and 'set'. The author investigates the logic of quantification over the universe of sets and discusses its role in second order logic, as well as in the analysis of proof by induction and definition by recursion. Suitable for graduate students and researchers in both philosophy and mathematics.




Set Theory for the Working Mathematician


Book Description

Presents those methods of modern set theory most applicable to other areas of pure mathematics.




Fuzzy Set Theory — and Its Applications


Book Description

Since its inception 20 years ago the theory of fuzzy sets has advanced in a variety of ways and in many disciplines. Applications of this theory can be found in artificial intelligence, computer science, control engineering, decision theory, expert systems, logic, management science, operations research, pattern recognition, robotics and others. Theoretical advances, too, have been made in many directions, and a gap has arisen between advanced theoretical topics and applications, which often use the theory at a rather elementary level. The primary goal of this book is to close this gap - to provide a textbook for courses in fuzzy set theory and a book that can be used as an introduction. This revised book updates the research agenda, with the chapters of possibility theory, fuzzy logic and approximate reasoning, expert systems and control, decision making and fuzzy set models in operations research being restructured and rewritten. Exercises have been added to almost all chapters and a teacher's manual is available upon request.




Extremal Finite Set Theory


Book Description

Extremal Finite Set Theory surveys old and new results in the area of extremal set system theory. It presents an overview of the main techniques and tools (shifting, the cycle method, profile polytopes, incidence matrices, flag algebras, etc.) used in the different subtopics. The book focuses on the cardinality of a family of sets satisfying certain combinatorial properties. It covers recent progress in the subject of set systems and extremal combinatorics. Intended for graduate students, instructors teaching extremal combinatorics and researchers, this book serves as a sound introduction to the theory of extremal set systems. In each of the topics covered, the text introduces the basic tools used in the literature. Every chapter provides detailed proofs of the most important results and some of the most recent ones, while the proofs of some other theorems are posted as exercises with hints. Features: Presents the most basic theorems on extremal set systems Includes many proof techniques Contains recent developments The book’s contents are well suited to form the syllabus for an introductory course About the Authors: Dániel Gerbner is a researcher at the Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences in Budapest, Hungary. He holds a Ph.D. from Eötvös Loránd University, Hungary and has contributed to numerous publications. His research interests are in extremal combinatorics and search theory. Balázs Patkós is also a researcher at the Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences. He holds a Ph.D. from Central European University, Budapest and has authored several research papers. His research interests are in extremal and probabilistic combinatorics.




Concise Introduction to Logic and Set Theory


Book Description

This book deals with two important branches of mathematics, namely, logic and set theory. Logic and set theory are closely related and play very crucial roles in the foundation of mathematics, and together produce several results in all of mathematics. The topics of logic and set theory are required in many areas of physical sciences, engineering, and technology. The book offers solved examples and exercises, and provides reasonable details to each topic discussed, for easy understanding. The book is designed for readers from various disciplines where mathematical logic and set theory play a crucial role. The book will be of interested to students and instructors in engineering, mathematics, computer science, and technology.




A Book of Set Theory


Book Description

"This accessible approach to set theory for upper-level undergraduates poses rigorous but simple arguments. Each definition is accompanied by commentary that motivates and explains new concepts. A historical introduction is followed by discussions of classes and sets, functions, natural and cardinal numbers, the arithmetic of ordinal numbers, and related topics. 1971 edition with new material by the author"--




Basic Set Theory


Book Description

The main notions of set theory (cardinals, ordinals, transfinite induction) are fundamental to all mathematicians, not only to those who specialize in mathematical logic or set-theoretic topology. Basic set theory is generally given a brief overview in courses on analysis, algebra, or topology, even though it is sufficiently important, interesting, and simple to merit its own leisurely treatment. This book provides just that: a leisurely exposition for a diversified audience. It is suitable for a broad range of readers, from undergraduate students to professional mathematicians who want to finally find out what transfinite induction is and why it is always replaced by Zorn's Lemma. The text introduces all main subjects of ``naive'' (nonaxiomatic) set theory: functions, cardinalities, ordered and well-ordered sets, transfinite induction and its applications, ordinals, and operations on ordinals. Included are discussions and proofs of the Cantor-Bernstein Theorem, Cantor's diagonal method, Zorn's Lemma, Zermelo's Theorem, and Hamel bases. With over 150 problems, the book is a complete and accessible introduction to the subject.




Set Theory with Applications


Book Description




Fuzzy Set Theory


Book Description

This book introduces fuzzy set theory to social science researchers. Fuzzy sets are categories with blurred boundaries. With classical sets, objects are either in the set or not, but objects can belong partially to more than one fuzzy set at a time. Many concepts in the social sciences have this characteristic, and fuzzy set theory provides methods for systematically dealing with them. A primary reason for not going beyond programmatic statements and rather unsophisticated uses of fuzzy set theory has been the lack of practical methods for combining fuzzy set concepts with statistical methods. This monograph takes that topic as its major focus, and provides explicit guides for researchers who would like to harness fuzzy set concepts while being able to make statistical inferences and test their models. Real examples and data-sets from several disciplines illustrate the techniques and applications, demonstrating how a combination of fuzzy sets and statistics enable researchers to analyze their data in new ways.