Intermediate Algebra 2e


Book Description




Sets, Relations, Functions


Book Description




Discrete Mathematics


Book Description

This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 360 exercises, including 230 with solutions and 130 more involved problems suitable for homework. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions.




Algebraic Problems and Exercises for High School (Sets, Sets Operations, Relations, Functions, Aspects of Combinatorics)


Book Description

In this book, you will find algebra exercises and problems, grouped by chapters, intended for higher grades in high schools or middle schools of general education. Its purpose is to facilitate training in mathematics for students in all high school categories, but can be equally helpful in a standalone workout. The book can also be used as an extracurricular source, as the reader shall find enclosed important theorems and formulas, standard definitions and notions that are not always included in school textbooks.







A Book of Set Theory


Book Description

"This accessible approach to set theory for upper-level undergraduates poses rigorous but simple arguments. Each definition is accompanied by commentary that motivates and explains new concepts. A historical introduction is followed by discussions of classes and sets, functions, natural and cardinal numbers, the arithmetic of ordinal numbers, and related topics. 1971 edition with new material by the author"--




Elements of Set Theory


Book Description

This is an introductory undergraduate textbook in set theory. In mathematics these days, essentially everything is a set. Some knowledge of set theory is necessary part of the background everyone needs for further study of mathematics. It is also possible to study set theory for its own interest--it is a subject with intruiging results anout simple objects. This book starts with material that nobody can do without. There is no end to what can be learned of set theory, but here is a beginning.




Mathematical Reasoning


Book Description

Focusing on the formal development of mathematics, this book shows readers how to read, understand, write, and construct mathematical proofs.Uses elementary number theory and congruence arithmetic throughout. Focuses on writing in mathematics. Reviews prior mathematical work with “Preview Activities” at the start of each section. Includes “Activities” throughout that relate to the material contained in each section. Focuses on Congruence Notation and Elementary Number Theorythroughout.For professionals in the sciences or engineering who need to brush up on their advanced mathematics skills. Mathematical Reasoning: Writing and Proof, 2/E Theodore Sundstrom




An Introduction to Analytic Functions


Book Description

When first published in 1959, this book was the basis of a two-semester course in complex analysis for upper undergraduate and graduate students. J. S. Mac Nerney was a proponent of the Socratic, or “do-it-yourself” method of learning mathematics, in which students are encouraged to engage in mathematical problem solving, including theorems at every level which are often regarded as “too difficult” for students to prove for themselves. Accordingly, Mac Nerney provides no proofs. What he does instead is to compose and arrange the investigation in his own unique style, so that a contextual proof is always available to the persistent student who enjoys a challenge. The central idea is to empower students by allowing them to discover and rely on their own mathematical abilities. This text may be used in a variety of settings, including: the usual classroom or seminar, but with the teacher acting mainly as a moderator while the students present their discoveries, a small-group setting in which the students present their discoveries to each other, and independent study. The Editors, William E. Kaufman (who was Mac Nerney’s last PhD student) and Ryan C. Schwiebert, have composed the original typed Work into LaTeX ; they have updated the notation, terminology, and some of the prose for modern usage, but the organization of content has been strictly preserved. About this Book, some new exercises, and an index have also been added.




Set Theory for Beginners


Book Description

Set Theory for BeginnersSet Theory for Beginners consists of a series of basic to intermediate lessons in set theory. In addition, all the proofwriting skills that are essential for advanced study in mathematics are covered and reviewed extensively. Set Theory for Beginners is perfect for professors teaching an undergraduate course or basic graduate course in set theory high school teachers working with advanced math students students wishing to see the type of mathematics they would be exposed to as a math major. The material in this pure math book includes: 16 lessons consisting of basic to intermediate topics in set theory and mathematical logic. A problem set after each lesson arranged by difficulty level. A complete solution guide is included as a downloadable PDF file. Set Theory Book Table Of Contents (Selected) Here's a selection from the table of contents: Introduction Lesson 1 - Sets Lesson 2 - Subsets Lesson 3 - Operations on Sets Lesson 4 - Relations Lesson 5 - Equivalence Relations and Partitions Lesson 6 - Functions Lesson 7 - Equinumerosity Lesson 8 - Induction and Recursion on N Lesson 9 - Propositional Logic Lesson 10 - First-order Logic Lesson 11 - Axiomatic Set Theory Lesson 12 - Ordinals Lesson 13 - Cardinals Lesson 14 - Martin's Axiom Lesson 15 - The Field of Real Numbers Lesson 16 - Clubs and Stationary Sets