Flow/Soot-Formation Interactions in Nonbuoyant Laminar Diffusion Flames


Book Description

This is the final report of a research program considering interactions between flow and soot properties within laminar diffusion flames. Laminar diffusion flames were considered because they provide model flame systems that are far more tractable for theoretical and experimental studies than more practical turbulent diffusion flames. In particular, understanding the transport and chemical reaction processes of laminar flames is a necessary precursor to understanding these processes in practical turbulent flames and many aspects of laminar diffusion flames have direct relevance to turbulent diffusion flames through application of the widely recognized laminar flamelet concept of turbulent diffusion flames. The investigation was divided into three phases, considering the shapes of nonbuoyant round laminar jet diffusion flames in still air, the shapes of nonbuoyant round laminar jet diffusion flames in coflowing air, and the hydrodynamic suppression of soot formation in laminar diffusion flames. Dai, Z. and Lin, K.-C. and Sunderland, P. B. and Xu, F. and Faeth, G. M. Glenn Research Center NAG3-661




The Proceedings of 11th Asia-Oceania Symposium on Fire Science and Technology


Book Description

This book features selected papers from the 11th Asia-Oceania Symposium on Fire Science and Technology (AOSFST 2018), held in Taipei, Taiwan. Covering the entire spectrum of fire safety science, it focuses on research on fires, explosions, combustion science, heat transfer, fluid dynamics, risk analysis and structural engineering, as well as other topics. Presenting advanced scientific insights, the book introduces and advances new ideas in all areas of fire safety science. As such it is a valuable resource for academic researchers, fire safety engineers, and regulators of fire, construction and safety authorities. Further it provides new ideas for more efficient fire protection.




Microgravity Combustion


Book Description

This book provides an introduction to understanding combustion, the burning of a substance that produces heat and often light, in microgravity environments-i.e., environments with very low gravity such as outer space. Readers are presented with a compilation of worldwide findings from fifteen years of research and experimental tests in various low-gravity environments, including drop towers, aircraft, and space.Microgravity Combustion is unique in that no other book reviews low- gravity combustion research in such a comprehensive manner. It provides an excellent introduction for those researching in the fields of combustion, aerospace, and fluid and thermal sciences.* An introduction to the progress made in understanding combustion in a microgravity environment* Experimental, theoretical and computational findings of current combustion research* Tutorial concepts, such as scaling analysis* Worldwide microgravity research findings




Forced and Natural Convection in Laminar-Jet Diffusion Flames. [normal-Gravity, Inverted-Gravity and Zero-Gravity Flames]


Book Description

An experimental investigation was conducted on methane, laminar-jet, diffusion flames with coaxial, forced-air flow to examine flame shapes in zero-gravity and in situations where buoyancy aids (normal-gravity flames) or hinders (inverted-gravity flames) the flow velocities. Fuel nozzles ranged in size from 0.051 to 0.305 cm inside radius, while the coaxial, convergent, air nozzle had a 1.4 cm inside radius at the fuel exit plane. Fuel flows ranged from 1.55 to 10.3 cu cm/sec and air flows from 0 to 597 cu cm/sec. A computer program developed under a previous government contract was used to calculate the characteristic dimensions of normal and zero-gravity flames only. The results include a comparison between the experimental data and the computed axial flame lengths for normal gravity and zero gravity which showed good agreement. Inverted-gravity flame width was correlated with the ratio of fuel nozzle radius to average fuel velocity. Flame extinguishment upon entry into weightlessness was studied, and it was found that relatively low forced-air velocities (approximately 10 cm/sec) are sufficient to sustain methane flame combustion in zero gravity. Flame color is also discussed. Haggard, J. B., Jr. Glenn Research Center NASA-TP-1841, E-487 RTOP 506-55-22




Boundary-Layer Analyses of Differential-Diffusion Effects In Laminar Jet Diffusion Flames


Book Description

Theoretical and numerical studies of laminar jet diffusion flames have been conducted in the limit of infinitely fast chemistry for unity oxygen Lewis number LO = 1, providing information on flame shapes and flame temperatures for different reactant-feed dilution, fuel Lewis number LF, and coflow-to-jet velocity ratios U0. Shvab-Zel'dovich coupling functions are used to write the conservation equations for planar and axisymmetric jet flames in the boundary-layer approximation. Specific consideration is given to the mixing-layer solution near the injector rim, where differential-diffusion effects are seen to result in the expected superadiabatic/subadiabatic temperature for LF smaller/larger than 1. These effects are more pronounced for U0 = 0 and at intermediate values of Zs. The evolution of the temperature along the flame is found to exhibit an unexpected behavior, in that irrespective of the dilution and coflow velocity the flame temperature always transitions from superadiabatic to subadiabatic when LF 1 and from subadiabatic to superadiabatic for LF 1. The variation with LF of the flame shape relative to the enthalpy eld is reasoned as the cause for the observed transition. Additional computations are performed for inverse diffusion flames with LO = 1 and LF ~= 1. These do not exhibit reversed differential-diffusion behaviors, indicating that the diffusivity of the abundant (co-flow) reactant is less critical than that of the deficient (central-jet) reactant.













Laminar Premixed and Diffusion Flames (Ground-Based Study)


Book Description

Ground-based studies of soot processes in laminar flames proceeded in two phases, considering laminar premixed flames and laminar diffusion flames, in turn. The test arrangement for laminar premixed flames involved round flat flame burners directed vertically upward at atmospheric pressure. The test arrangement for laminar jet diffusion flames involved a round fuel port directed vertically upward with various hydrocarbon fuels burning at atmospheric pressure in air. In both cases, coflow was used to prevent flame oscillations and measurements were limited to the flame axes. The measurements were sufficient to resolve soot nucleation, growth and oxidation rates, as well as the properties of the environment needed to evaluate mechanisms of these processes. The experimental methods used were also designed to maintain capabilities for experimental methods used in corresponding space-based experiments. This section of the report will be limited to consideration of flame structure for both premixed and diffusion flames. Dai, Z. and El-Leathy, A. M. and Lin, K.-C. and Sunderland, P. B. and Xu, F. and Faeth, G. M. and Urban, D. L. (Technical Monitor) and Yuan, Z.-G. (Technical Monitor) Glenn Research Center