Shocks, Superbubbles, and Filaments


Book Description

Giant molecular clouds (GMCs), out of which stars form, are complex, dynamic systems, which both influence and are shaped by the process of star formation. In this dissertation, I examine three different facets of the dynamical motions within GMCs. Collapse modes in different dimensional objects.Molecular clouds contain lower dimensional substructures, such as filaments and sheets. The collapse properties of finite filaments and sheets differ from those of spherical objects as well as infinite sheets and filaments. I examine the importance of local collapse modes of small central perturbations, relative to global collapse modes, in different dimensional objects to elucidate whether strong perturbations are required for molecular clouds to fragment to form stars. I also calculate the dependence of the global collapse timescale upon the aspect ratio of sheets and filaments. I find that lower dimensional objects are more readily fragmented, and that for a constant density, lower dimensional objects and clouds with larger aspect ratios collapse more slowly. An edge-driven collapse mode also exists in sheets and filaments and is most important in elongated filaments. The failure to consider the geometry of a gas cloud is shown to lead to an overestimation of the star formation rate by up to an order of magnitude.Molecular tracers of turbulent energy dissipation.Molecular clouds contain supersonic turbulence that simulations predict will decay rapidly via shocks. I use shock models to predict which species emit the majority of the turbulent energy dissipated in shocks and find that carbon monoxide, CO, is primarily responsible for radiating away this energy. By combining these shock models with estimates for the turbulent energy dissipation rate of molecular clouds, I predict the expected shock spectra of CO from molecular clouds. I compare the results of these shock models to predictions for the emission from the unshocked gas in GMCs and show that mid-to-high rotational transitions of CO (e.g., J = 8 to 7), should be dominated by shocked gas emission and should trace the turbulent energy being dissipated in molecular clouds.Orion-Eridanus superbubble.The nearby Orion star forming region has created a large bubble of hot plasma in the local interstellar medium referred to as the Orion-Eridanus superbubble. This bubble is unusual in that it is highly elongated, is believed to be oriented roughly parallel to the galactic plane, and contains bright filamentary features on the Eridanus side. I fit models for a wind driven bubble in an exponential atmosphere to the Orion-Eridanus superbubble and show that the elongation of the bubble cannot be explained by such a model in which the scale height of the galactic disk is the typical value of 150 pc. Either a much smaller scale height must be adopted or some additional physics must be added to the model. I also show that the Eridanus filaments cannot be equilibrium objects ionized by the Orion star forming region.




Bubble Dynamics and Shock Waves


Book Description

This book explores the interplay of bubble dynamics and shock waves, covering shock wave emission by laser generated bubbles, pulsating bubbles near boundaries, interaction of shock waves with bubble clouds, applications in shock wave lithotripsy, and more.




Terrestrial and Extraterrestrial Space Dangers: Outer Space Perils, Rocket Risks and the Health Consequences of the Space Environment


Book Description

Natural elements and cosmic phenomena in space, such as asteroids, comets, meteors, black holes and super bubbles pose a threat to the planet Earth and spacefarers in the near-Earth environment. Terrestrial and Extraterrestrial Space Dangers describes these dangers in the near-Earth outer space environment. The uniquely risky nature of rocket transportation is documented and quantified. The human health consequences for vision, muscles, and the neurovestibular system, for instance, on exposure to an outer space environment, are also explained in this book. Readers will benefit from the extensive information offered within this text which is also accompanied with a bibliography of references. This book offers a comprehensive primer for anyone interested in space travel and associated risk assessment.




Cosmic Magnetic Fields


Book Description

While magnetic fields permeate the universe on all scales, the present book is dedicated to their investigation on the largest scales and affords a balanced account of both theoretical and observational aspects. Written as a set of advanced lectures and tutorial reviews that lead up to the forefront of research, this book offers both a modern source of reference for the experienced researchers as well as a high-level introductory text for postgraduate students and nonspecialist researchers working in related areas.




Protostars and Planets VI


Book Description

The revolutionary discovery of thousands of confirmed and candidate planets beyond the solar system brings forth the most fundamental question: How do planets and their host stars form and evolve? Protostars and Planets VI brings together more than 250 contributing authors at the forefront of their field, conveying the latest results in this research area and establishing a new foundation for advancing our understanding of stellar and planetary formation. Continuing the tradition of the Protostars and Planets series, this latest volume uniquely integrates the cross-disciplinary aspects of this broad field. Covering an extremely wide range of scales, from the formation of large clouds in our Milky Way galaxy down to small chondrules in our solar system, Protostars and Planets VI takes an encompassing view with the goal of not only highlighting what we know but, most importantly, emphasizing the frontiers of what we do not know. As a vehicle for propelling forward new discoveries on stars, planets, and their origins, this latest volume in the Space Science Series is an indispensable resource for both current scientists and new students in astronomy, astrophysics, planetary science, and the study of meteorites.










From the Realm of the Nebulae to Populations of Galaxies


Book Description

In order to outline possible future directions in galaxy research, this book wants to be a short stopover, a moment of self-reflection of the past century of achievements in this area. Since the pioneering years of galaxy research in the early 20th century, the research on galaxies has seen a relentless advance directly connected to the parallel exponential growth of new technologies. Through a series of interviews with distinguished astronomers the editors provide a snapshot of the achievements obtained in understanding galaxies. While many initial questions about their nature have been addressed, many are still open and require new efforts to achieve a solution. The discussions may reveal paradigms worthwhile revisiting. With the help of some of those scientists who have contributed to it, the editors sketch the history of this scientific journey and ask them for inspirations for future directions of galaxy research.




The Galactic and Extragalactic Background Radiation


Book Description

Proceedings of the 139th Symposium of the International Astronomical Union on `The Galactic and Extragalactic Background Radiation, held in Heidelberg, FRG, June 12-16, 1989