Science and Engineering of Short Fibre-Reinforced Polymer Composites


Book Description

Science and Engineering of Short Fibre Reinforced Polymer Composites, Second Edition, provides the latest information on the 'short fiber reinforced composites' (SFRP) that have found extensive applications in automobiles, business machines, durable consumer items, sporting goods and electrical industries due to their low cost, easy processing and superior mechanical properties over parent polymers. This updated edition presents new developments in this field of research and includes new chapters on electrical conductivity, structural monitoring, functional properties, self-healing, finite element method techniques, multi-scale SFRCs, and both modern computational and process engineering methods. - Reviews the mechanical properties and functions of short fiber reinforced polymer composites (SFRP) - Examines recent developments in the fundamental mechanisms of SFRP's - Assesses major factors affecting mechanical performance, such as stress transfer and strength - Includes new chapters on electrical conductivity, structural monitoring, functional properties, self-healing, finite element method techniques, multi-scale SFRCs, modern computational methods, and process engineering methods




Short Fibre-Polymer Composites


Book Description

Provides a detailed insight into short fibres of different types (metallic and organic) in a polymer matrix, as well as reporting on the design considerations and applications of such composites. It relates unparalleled research into a diverse range of composites.




Short Fibre-Polymer Composites


Book Description

Provides a detailed insight into short fibers of different types (metallic and organic) in a polymer matrix, as well as reporting on the design considerations and applications of such composites. It relates unparalleled research into a diverse range of composites.




Microstructural Design of Fiber Composites


Book Description

The book is intended as a text for graduate or advanced undergraduate students, but will also be an excellent reference for all materials scientists and engineers.




Natural and Synthetic Fiber Reinforced Composites


Book Description

Natural and Synthetic Fiber Reinforced Composites Discover a comprehensive exploration of fiber reinforced polymers by an expert team of editors Fiber reinforced polymer (FRP) composites offer several unique properties that make them ideal for use in a wide range of industries, from automotive and aerospace to marine, construction, and co-industrial. In Natural and Synthetic Fiber Reinforced Composites: Synthesis, Properties and Applications, a distinguished team of mechanical engineers delivers a comprehensive overview of fiber reinforced composites. This edited volume includes thorough discussions of glass-, cotton-, and carbon-fiber reinforced materials, as well as the tribological properties and non-structural applications of synthetic fiber composites. Readers will also find practical explorations of the structural evolution, mechanical features, and future possibilities of fiber, textile, and nano-cementitious materials. The physical and chemical properties of cotton fiber-based composites are explored at length, as are the extraordinary mechanical, thermal, electrical, electronic, and field emission properties of carbon nanotubes. This singular book also includes: A thorough discussion of recent advancements in natural fiber reinforced polymer composites, their implications, and the opportunities that arise as a result A comprehensive exploration of the thermal behavior of natural fiber-based composites An insightful review of the literature on sisal fiber with polymer matrices A response to the growing research gap in the existing literature regarding natural fiber-based polymer composites and solutions to address it Perfect for scientists, engineers, professors, and students working in areas involving natural and synthetic reinforced polymers and composites, Natural and Synthetic Fiber Reinforced Composites: Synthesis, Properties and Applications offers a one-of-a-kind resource to help readers understand a critical and rapidly evolving technology.




Multi-Scale Continuum Mechanics Modelling of Fibre-Reinforced Polymer Composites


Book Description

Multi-scale modelling of composites is a very relevant topic in composites science. This is illustrated by the numerous sessions in the recent European and International Conferences on Composite Materials, but also by the fast developments in multi-scale modelling software tools, developed by large industrial players such as Siemens (Virtual Material Characterization toolkit and MultiMechanics virtual testing software), MSC/e-Xstream (Digimat software), Simulia (micromechanics plug-in in Abaqus), HyperSizer (Multi-scale design of composites), Altair (Altair Multiscale Designer) This book is intended to be an ideal reference on the latest advances in multi-scale modelling of fibre-reinforced polymer composites, that is accessible for both (young) researchers and end users of modelling software. We target three main groups: This book aims at a complete introduction and overview of the state-of-the-art in multi-scale modelling of composites in three axes: • ranging from prediction of homogenized elastic properties to nonlinear material behaviour • ranging from geometrical models for random packing of unidirectional fibres over meso-scale geometries for textile composites to orientation tensors for short fibre composites • ranging from damage modelling of unidirectionally reinforced composites over textile composites to short fibre-reinforced composites The book covers the three most important scales in multi-scale modelling of composites: (i) micro-scale, (ii) meso-scale and (iii) macro-scale. The nano-scale and related atomistic and molecular modelling approaches are deliberately excluded, since the book wants to focus on continuum mechanics and there are already a lot of dedicated books about polymer nanocomposites. A strong focus is put on physics-based damage modelling, in the sense that the chapters devote attention to modelling the different damage mechanisms (matrix cracking, fibre/matrix debonding, delamination, fibre fracture,...) in such a way that the underlying physics of the initiation and growth of these damage modes is respected. The book also gives room to not only discuss the finite element based approaches for multi-scale modelling, but also much faster methods that are popular in industrial software, such as Mean Field Homogenization methods (based on Mori-Tanaka and Eshelby solutions) and variational methods (shear lag theory and more advanced theories). Since the book targets a wide audience, the focus is put on the most common numerical approaches that are used in multi-scale modelling. Very specialized numerical methods like peridynamics modelling, Material Point Method, eXtended Finite Element Method (XFEM), isogeometric analysis, SPH (Smoothed Particle Hydrodynamics),... are excluded. Outline of the book The book is divided in three large parts, well balanced with each a similar number of chapters:




Natural Fiber-Reinforced Composites


Book Description

Natural Fiber-Reinforced Composites In-depth overview of thermal analysis of natural fiber-reinforced composites In Natural Fiber-Reinforced Composites: Thermal Properties and Applications, a team of distinguished researchers has delivered a comprehensive overview of the thermal properties of natural fiber-reinforced polymer composites. The book brings together information currently dispersed throughout the scientific literature and offers viable and environmentally friendly alternatives to conventional composites. The book highlights the thermal analysis of natural fiber-reinforced composites with techniques such as Thermogravimetric Analysis, Dynamic Mechanical Analysis, Thermomechanical Analysis, Differential Scanning Calorimetry, etc. This book provides: A thorough review of the thermal characterization of natural fiber-based hybrid composites Detailed investigation of the thermal properties of polymer composites reinforced with various natural fibers such as flax fiber, pineapple leaf fiber, sisal, sugar palm, grass fiber and cane fiber Discussions on the thermal properties of hybrid natural fiber-reinforced composites with various thermosetting and thermoplastic polymers Influence of nanofillers on the thermal stability and thermal decomposition characteristics of the natural fiber-based hybrid composites Natural Fiber-Reinforced Composites: Thermal Properties and Applications is a must-read for materials scientists, polymer chemists, and professionals working in the industry. This book is ideal for readers seeking to make an informed decision regarding materials selection for applications involving thermal insulation and elevated temperature. The suitability of natural fiber-reinforced composites in the automotive, mechanical, and civil engineering sectors is highlig




Load-Bearing Fibre Composites


Book Description

Load-Bearing Fibre Composites provides a unified view of the entire field of fiber and platelet composites. This book explores the complex interactions between fibers and matrix. Organized into 12 chapters, this book begins with an overview of the fundamental ideas in the field of fiber reinforced composites. This text then provides data on their load-bearing capabilities. Other chapters consider a rough estimate of how strong a material could be and describe the two main sources of weakness in real materials. This book discusses as well the slender forms of material and describes the simple slip theory of reinforcement that gives the modulus and strength for aligned short-fiber composites. The final chapter deals with the versatile use of fiber reinforced materials, which can be designed for a specific application by suitable choice of components and volume fraction. This book is a valuable resource for materials scientists, metallurgists, designers, engineers, and research workers.




Machining and Machinability of Fiber Reinforced Polymer Composites


Book Description

This book covers current advances and practices in machining fibre-reinforced polymer composites under various conventional and nonconventional processes. It presents recent research and practices for effective and efficient machining of difficult-to-cut material, providing the technological ‘know-how’ on delamination-free of drilling, milling, trimming, and other cutting processes on fibre-reinforced polymer composites. It also guides the reader on the selection of optimum machining parameters, tool materials, as well as tool geometry. This book is of interest to academicians, students, researchers, practitioners, and industrialists working in aerospace, automotive, marine, and construction industries.




New Materials in Civil Engineering


Book Description

New Materials in Civil Engineering provides engineers and scientists with the tools and methods needed to meet the challenge of designing and constructing more resilient and sustainable infrastructures. This book is a valuable guide to the properties, selection criteria, products, applications, lifecycle and recyclability of advanced materials. It presents an A-to-Z approach to all types of materials, highlighting their key performance properties, principal characteristics and applications. Traditional materials covered include concrete, soil, steel, timber, fly ash, geosynthetic, fiber-reinforced concrete, smart materials, carbon fiber and reinforced polymers. In addition, the book covers nanotechnology and biotechnology in the development of new materials. - Covers a variety of materials, including fly ash, geosynthetic, fiber-reinforced concrete, smart materials, carbon fiber reinforced polymer and waste materials - Provides a "one-stop resource of information for the latest materials and practical applications - Includes a variety of different use case studies