Biomaterials Research Advances


Book Description

Biomaterials serve as synthetic or natural materials used to replace parts of living systems or to function contact with living tissue. Biomaterials are intended to interface with biological systems to evaluate, treat, augment or replace any tissue, organ or function of the body. A biomaterial is different from a biological material such as bone that is produced by a biological system. Artificial hips, vascular-stents, artificial pacemakers, and catheters are all made from different biomaterials and comprise different medical devices. This book presents new approaches to biomaterial development including multi-field bone remodelling, novel strategies for conferring antibacterial properties to bone cement, polyacrylonitrile-based biomaterials for enzyme immobilisation and functionalised magnetic nanoparticles for tissue engineering from around the globe.




Trends in Biomaterials Research


Book Description

Biomaterials serve as synthetic or natural materials used to replace parts of living systems or to enhance contact with living tissue. Biomaterials are intended to interface with biological systems to evaluate, treat, augment or replace any tissue, organ or function of the body. A biomaterial is different from a biological material such as bone that is produced by a biological system. Artificial hips, vascular stents, artificial peacemakers, and catheters are all made from different biomaterials and comprise different medical devices. This book presents new approaches to biomaterial development including multi-field bone remodeling, novel strategies for conferring antibacterial properties to bone cement, polyacrylonitrile-based biomaterials for enzyme immobilisation and functionalised magnetic nanoparticles for tissue engineering.




Functional Biomaterials


Book Description

This book explores in depth a wide range of functional biomaterials-based systems for drug, gene delivery, and biomedical aspects. The chapters cover newer technologies such as polymeric micelle, pH-responsive biomaterials, stimuli-responsive hydrogels, silk fibroin, inorganic biomaterials, synthetic biomaterials, 3D printed biomaterials, metallic biomaterials, ceramic and hybrid biomaterials. It also describes the theranostic approaches for cancer therapy, the biomaterials-based nanofibers scaffolds in tissue engineering, as well as the strategies applications of metallic biomaterials for the medical and dental prosthetic field. This newer and updated approach will be attractive for biomedical engineering students working on materials science in the development of novel drug delivery strategies. The book will be an important reference for researchers and professionals working on biomaterial research in the pharmaceutical and medical fields.




Functional Biomaterials


Book Description




Functional Biomaterials


Book Description

This book merges the two most important trends in biomaterials: functionalization and renewable chemistry. It covers a variety of biopolymers and various approaches for the transformation of these biopolymers into functional units.




Principles of Nutrigenetics and Nutrigenomics


Book Description

Principles of Nutrigenetics and Nutrigenomics: Fundamentals for Individualized Nutrition is the most comprehensive foundational text on the complex topics of nutrigenetics and nutrigenomics. Edited by three leaders in the field with contributions from the most well-cited researchers conducting groundbreaking research in the field, the book covers how the genetic makeup influences the response to foods and nutrients and how nutrients affect gene expression. Principles of Nutrigenetics and Nutrigenomics: Fundamentals for Individualized Nutrition is broken into four parts providing a valuable overview of genetics, nutrigenetics, and nutrigenomics, and a conclusion that helps to translate research into practice. With an overview of the background, evidence, challenges, and opportunities in the field, readers will come away with a strong understanding of how this new science is the frontier of medical nutrition. Principles of Nutrigenetics and Nutrigenomics: Fundamentals for Individualized Nutrition is a valuable reference for students and researchers studying nutrition, genetics, medicine, and related fields. Uniquely foundational, comprehensive, and systematic approach with full evidence-based coverage of established and emerging topics in nutrigenetics and nutrigenomics Includes a valuable guide to ethics for genetic testing for nutritional advice Chapters include definitions, methods, summaries, figures, and tables to help students, researchers, and faculty grasp key concepts Companion website includes slide decks, images, questions, and other teaching and learning aids designed to facilitate communication and comprehension of the content presented in the book




Bio-Inspired Innovation and National Security


Book Description

Despite the vital importance of the emerging area of biotechnology and its role in defense planning and policymaking, no definitive book has been written on the topic for the defense policymaker, the military student, and the private-sector bioscientist interested in the "emerging opportunities market" of national security. This edited volume is intended to help close this gap and provide the necessary backdrop for thinking strategically about biology in defense planning and policymaking. This volume is about applications of the biological sciences, here called "biologically inspired innovations," to the military. Rather than treating biology as a series of threats to be dealt with, such innovations generally approach the biological sciences as a set of opportunities for the military to gain strategic advantage over adversaries. These opportunities range from looking at everything from genes to brains, from enhancing human performance to creating renewable energy, from sensing the environment around us to harnessing its power.




The Cosmic Zoo


Book Description

Are humans a galactic oddity, or will complex life with human abilities develop on planets with environments that remain habitable for long enough? In a clear, jargon-free style, two leading researchers in the burgeoning field of astrobiology critically examine the major evolutionary steps that led us from the distant origins of life to the technologically advanced species we are today. Are the key events that took life from simple cells to astronauts unique occurrences that would be unlikely to occur on other planets? By focusing on what life does - it's functional abilities - rather than specific biochemistry or anatomy, the authors provide plausible answers to this question. Systematically exploring the various pathways that led to the complex biosphere we experience on planet Earth, they show that most of the steps along that path are likely to occur on any world hosting life, with only two exceptions: One is the origin of life itself – if this is a highly improbable event, then we live in a rather “empty universe”. However, if this isn’t the case, we inevitably live in a universe containing a myriad of planets hosting complex as well as microbial life - a “cosmic zoo”. The other unknown is the rise of technologically advanced beings, as exemplified on Earth by humans. Only one technological species has emerged in the roughly 4 billion years life has existed on Earth, and we don’t know of any other technological species elsewhere. If technological intelligence is a rare, almost unique feature of Earth's history, then there can be no visitors to the cosmic zoo other than ourselves. Schulze-Makuch and Bains take the reader through the history of life on Earth, laying out a consistent and straightforward framework for understanding why we should think that advanced, complex life exists on planets other than Earth. They provide a unique perspective on the question that puzzled the human species for centuries: are we alone?




Silicon Carbide Technology for Advanced Human Healthcare Applications


Book Description

After over two decades of focused research and development, silicon carbide (SiC) is now ready for use in the healthcare sector and Silicon Carbide Technology for Advanced Human Healthcare Applications provides an up-to-date assessment of SiC devices for long-term human use. It explores a plethora of applications that SiC is uniquely positioned for in human healthcare, beginning with the three primary areas of technology which are closest to human trials and thus adoption in the healthcare industry: neural implants and spinal cord repair, graphene and biosensors, and finally deep tissue cancer therapy using SiC nanotechnology. Biomedical-inspired engineers, scientists, and healthcare professionals will find this book to be very useful in two ways: (I) as a guide to new ways to design and develop advanced medical devices and (II) as a reference for new developments in the field. The book’s intent is to stimulate ideas for further technological enhancements and breakthroughs, which will provide alternative solutions for human healthcare applications. Discusses the utilization of SiC materials for biomedical applications Provides a logical pathway to understand why SiC is ideal for several critical applications, in particular for long-term implantable devices, and will serve as a guide to new ways to design and develop advanced medical devices Serves as a reference for new developments in the field and as a technology resource for medical doctors and practitioners looking to identify and implement advanced engineering solutions to everyday medical challenges that currently lack long-term, cost-effective solutions