Side Impact Evaluation with High Performance Polymers and Improved Design of Impact Beam as Per FMVSS-214 Regulations


Book Description

This study describes the development of a new side-impact beam design with high-performance polymer/plastic materials. The new designs are analyzed and contrasted with the original side impact beam made from conventional steel material. The novel designs are assessed on a wide range of parameters to make sure that occupant safety is not compromised. Three different high-performance plastic materials (LCP-CF-30, PA6-CF-30, and PA66-GF-60) are considered. The methodological framework of Finite Element Analysis (FEA) is used for numerically computing, analyzing, evaluating, and refining the new side-impact bar designs. This study accordingly examines and quantifies the detailed effects of the collision on the side-impact beams of different designs. The design and the material with the desired result are then integrated into a typical passenger car Finite Element Model, and computational impact evaluation tests and analysis are carried out as per Federal Motor Vehicle Safety Standard (FMVSS-214). The results from the Moving Deformable Barrier (MDB) and the Rigid Pole tests, including parameters such as intrusions, accelerations, and ratings are determined as per Insurance Institute for Highway Safety (IIHS) side-impact structural safety guidelines. High-performance plastics-based side-impact beams are shown to exhibit considerable reductions in intrusions and accelerations in the tested FE models. Of all the designs and materials tested, the designs based on LCP-CF-30 material are shown to exhibit the most reductions in intrusion and accelerations on side-impact beams. Inferring from the MDB and Rigid Pole tests, the study concludes that the novel LCP-CF-30 based side-impact beam provides improved safety when contrasted with that of the original steel side-impact beam. This study also demonstrates that when used with appropriate designs, high-performance plastics can be quite effective in producing components with desired energy absorption capabilities and significant reductions in displacements and mass.




Innovations in Mechanical Engineering


Book Description

This book comprises select proceedings of the International Conference on Innovations in Mechanical Engineering (ICIME 2021). It presents innovative ideas and new findings in the field of mechanical engineering. Various topics covered in this book are aerospace engineering, automobile engineering, thermal engineering, renewable energy sources, bio-mechanics, fluid mechanics, MEMS, mechatronics, robotics, CAD/CAM, CAE, CFD, design andoptimization, tribology, materials engineering and metallurgy, mimics, surface engineering, nanotechnology, polymer science, manufacturing, production management, industrial engineering and rapid prototyping. This book will be useful for the students, researchers and professionals working in the various areas of mechanical engineering.




Automotive Paints and Coatings


Book Description

Now in its second edition and still the only book of its kind, this is an authoritative treatment of all stages of the coating process -- from body materials, paint shop design, and pre-treatment, through primer surfacers and top coats. New topics of interest covered are color control, specification and testing of coatings, as well as quality and supply concepts, while valuable information on capital and legislation aspects is given. Invaluable for engineers in the automotive and paints and coatings industry as well as for students in the field.




Advances in Interiors and Instrument Panels


Book Description

Collection of papers from the 2003 SAE World Congress, held March 3-6 in Detroit, Michigan. Papers discuss some of the new trends that are reflecting the direction in integrating new components offering lighter-weight solutions.







Evaluation of New Steel and Composite Beam Designs for Side Impact Protection of a Sedan as Per FMVSS 214, IIHS and Side Pole Tests Requirements


Book Description

Side impact crashes can be generally quite dangerous due to the limited space in the car door for large deformation and energy-dissipation in order to protect an occupant from the crash forces. The side impact collision is the second largest cause of death in United States after frontal crash. Day-by-day increase in the fuel cost and the emission of the smoke from the automobile industry are also the major concerns in the contemporary world. Hence the safety, fuel efficiency and emission gas regulation of the passenger cars are important issues in contemporary world. An ideal way to increase the fuel efficiency without sacrificing the safety is to employ composite materials in the body of the cars because the composite materials have higher specific strength than those of steel. The increase in the usage of composite material directly influences the decrease in the total weight of car and gas emission. In this research, carbon/epoxy AS4/3051-6 is used as composite material for a side impact beam design, which has adequate load carrying capacities and that it absorbs more strain energy than steel. The finite element (FE) models of a typical passenger car and the moving deformable barrier (MDB), as available in literature, have been utilized for the analysis in this thesis. The current side impact beam is removed from the car and the new beam, which is designed using CATIA, is merged on to the driver side of the front door of the car model. The total energy absorptions of the new beam with steel and composite material are compared with those of the current beam in three-point bending test simulations. The surface plots for mass (weight), specific energy, and intrusion are developed as design charts. The intrusions of the beam are then evaluated by using the full-vehicle models and as per regulatory FMVSS 214, IIHS and Side Pole impact safety methods. The new impact beam with composite material is shown to exhibit higher impact energy absorption capability, when compared to current beam and new beam with steel, with 62.5% reduction in weight.




Vehicle Crash Mechanics


Book Description

Governed by strict regulations and the intricate balance of complex interactions among variables, the application of mechanics to vehicle crashworthiness is not a simple task. It demands a solid understanding of the fundamentals, careful analysis, and practical knowledge of the tools and techniques of that analysis. Vehicle Crash Mechanics s







Ergonomics in the Automotive Design Process


Book Description

The auto industry is facing tough competition and severe economic constraints. Their products need to be designed "right the first time" with the right combinations of features that not only satisfy the customers but continually please and delight them by providing increased functionality, comfort, convenience, safety, and craftsmanship. Based on t




ITF Research Reports Moving Freight with Better Trucks Improving Safety, Productivity and Sustainability


Book Description

This report identifies potential improvements in terms of more effective safety and environmental regulation for trucks, backed by better systems of enforcement, and identifies opportunities for greater efficiency and higher productivity.