Signal and Image Analysis for Biomedical and Life Sciences


Book Description

With an emphasis on applications of computational models for solving modern challenging problems in biomedical and life sciences, this book aims to bring collections of articles from biologists, medical/biomedical and health science researchers together with computational scientists to focus on problems at the frontier of biomedical and life sciences. The goals of this book are to build interactions of scientists across several disciplines and to help industrial users apply advanced computational techniques for solving practical biomedical and life science problems. This book is for users in the fields of biomedical and life sciences who wish to keep abreast with the latest techniques in signal and image analysis. The book presents a detailed description to each of the applications. It can be used by those both at graduate and specialist levels.




Machine Learning in Bio-Signal Analysis and Diagnostic Imaging


Book Description

Machine Learning in Bio-Signal Analysis and Diagnostic Imaging presents original research on the advanced analysis and classification techniques of biomedical signals and images that cover both supervised and unsupervised machine learning models, standards, algorithms, and their applications, along with the difficulties and challenges faced by healthcare professionals in analyzing biomedical signals and diagnostic images. These intelligent recommender systems are designed based on machine learning, soft computing, computer vision, artificial intelligence and data mining techniques. Classification and clustering techniques, such as PCA, SVM, techniques, Naive Bayes, Neural Network, Decision trees, and Association Rule Mining are among the approaches presented. The design of high accuracy decision support systems assists and eases the job of healthcare practitioners and suits a variety of applications. Integrating Machine Learning (ML) technology with human visual psychometrics helps to meet the demands of radiologists in improving the efficiency and quality of diagnosis in dealing with unique and complex diseases in real time by reducing human errors and allowing fast and rigorous analysis. The book's target audience includes professors and students in biomedical engineering and medical schools, researchers and engineers. - Examines a variety of machine learning techniques applied to bio-signal analysis and diagnostic imaging - Discusses various methods of using intelligent systems based on machine learning, soft computing, computer vision, artificial intelligence and data mining - Covers the most recent research on machine learning in imaging analysis and includes applications to a number of domains




Biomedical Signal and Image Processing


Book Description

Written for senior-level and first year graduate students in biomedical signal and image processing, this book describes fundamental signal and image processing techniques that are used to process biomedical information. The book also discusses application of these techniques in the processing of some of the main biomedical signals and images, such as EEG, ECG, MRI, and CT. New features of this edition include the technical updating of each chapter along with the addition of many more examples, the majority of which are MATLAB based.




Classification and Clustering in Biomedical Signal Processing


Book Description

Advanced techniques in image processing have led to many innovations supporting the medical field, especially in the area of disease diagnosis. Biomedical imaging is an essential part of early disease detection and often considered a first step in the proper management of medical pathological conditions. Classification and Clustering in Biomedical Signal Processing focuses on existing and proposed methods for medical imaging, signal processing, and analysis for the purposes of diagnosing and monitoring patient conditions. Featuring the most recent empirical research findings in the areas of signal processing for biomedical applications with an emphasis on classification and clustering techniques, this essential publication is designed for use by medical professionals, IT developers, and advanced-level graduate students.




Advanced Methods in Biomedical Signal Processing and Analysis


Book Description

Advanced Methods in Biomedical Signal Processing and Analysis presents state-of-the-art methods in biosignal processing, including recurrence quantification analysis, heart rate variability, analysis of the RRI time-series signals, joint time-frequency analyses, wavelet transforms and wavelet packet decomposition, empirical mode decomposition, modeling of biosignals, Gabor Transform, empirical mode decomposition. The book also gives an understanding of feature extraction, feature ranking, and feature selection methods, while also demonstrating how to apply artificial intelligence and machine learning to biosignal techniques. - Gives advanced methods in signal processing - Includes machine and deep learning methods - Presents experimental case studies




Biomedical Image Analysis


Book Description

Computers have become an integral part of medical imaging systems and are used for everything from data acquisition and image generation to image display and analysis. As the scope and complexity of imaging technology steadily increase, more advanced techniques are required to solve the emerging challenges. Biomedical Image Analysis demonstr




Biomedical Signal Analysis


Book Description

The book will help assist a reader in the development of techniques for analysis of biomedical signals and computer aided diagnoses with a pedagogical examination of basic and advanced topics accompanied by over 350 figures and illustrations. Wide range of filtering techniques presented to address various applications 800 mathematical expressions and equations Practical questions, problems and laboratory exercises Includes fractals and chaos theory with biomedical applications




Biomedical Signal Analysis


Book Description

Biomedical Signal Analysis Comprehensive resource covering recent developments, applications of current interest, and advanced techniques for biomedical signal analysis Biomedical Signal Analysis provides extensive insight into digital signal processing techniques for filtering, identification, characterization, classification, and analysis of biomedical signals with the aim of computer-aided diagnosis, taking a unique approach by presenting case studies encountered in the authors’ research work. Each chapter begins with the statement of a biomedical signal problem, followed by a selection of real-life case studies and illustrations with the associated signals. Signal processing, modeling, or analysis techniques are then presented, starting with relatively simple “textbook” methods, followed by more sophisticated research-informed approaches. Each chapter concludes with solutions to practical applications. Illustrations of real-life biomedical signals and their derivatives are included throughout. The third edition expands on essential background material and advanced topics without altering the underlying pedagogical approach and philosophy of the successful first and second editions. The book is enhanced by a large number of study questions and laboratory exercises as well as an online repository with solutions to problems and data files for laboratory work and projects. Biomedical Signal Analysis provides theoretical and practical information on: The origin and characteristics of several biomedical signals Analysis of concurrent, coupled, and correlated processes, with applications in monitoring of sleep apnea Filtering for removal of artifacts, random noise, structured noise, and physiological interference in signals generated by stationary, nonstationary, and cyclostationary processes Detection and characterization of events, covering methods for QRS detection, identification of heart sounds, and detection of the dicrotic notch Analysis of waveshape and waveform complexity Interpretation and analysis of biomedical signals in the frequency domain Mathematical, electrical, mechanical, and physiological modeling of biomedical signals and systems Sophisticated analysis of nonstationary, multicomponent, and multisource signals using wavelets, time-frequency representations, signal decomposition, and dictionary-learning methods Pattern classification and computer-aided diagnosis Biomedical Signal Analysis is an ideal learning resource for senior undergraduate and graduate engineering students. Introductory sections on signals, systems, and transforms make this book accessible to students in disciplines other than electrical engineering.




Biomedical Image Analysis Recipes in MATLAB


Book Description

As its title suggests, this innovative book has been written for life scientists needing to analyse their data sets, and programmers, wanting a better understanding of the types of experimental images life scientists investigate on a regular basis. Each chapter presents one self-contained biomedical experiment to be analysed. Part I of the book presents its two basic ingredients: essential concepts of image analysis and Matlab. In Part II, algorithms and techniques are shown as series of "recipes" or solved examples that show how specific techniques are applied to a biomedical experiments like Western Blots, Histology, Scratch Wound Assays and Fluoresence. Each recipe begins with simple techniques that gradually advance in complexity. Part III presents some advanced techniques for the generation of publication quality figures. The book does not assume any computational or mathematical expertise. A practical, clearly-written introduction to biomedical image analysis that provides the tools for life scientists and engineers to use when solving problems in their own laboratories. Presents the basic concepts of MATLAB software and uses it throughout to show how it can execute flexible and powerful image analysis programs tailored to the specific needs of the problem. Within the context of four biomedical cases, it shows algorithms and techniques as series of "recipes", or solved examples that show how a particular technique is applied in a specific experiment. Companion website containing example datasets, MATLAB files and figures from the book.




Advances in Data and Information Sciences


Book Description

The book gathers a collection of high-quality peer-reviewed research papers presented at the International Conference on Data and Information Systems (ICDIS 2017), held at Indira Gandhi National Tribal University, India from November 3 to 4, 2017. The book covers all aspects of computational sciences and information security. In chapters written by leading researchers, developers and practitioner from academia and industry, it highlights the latest developments and technical solutions, helping readers from the computer industry capitalize on key advances in next-generation computer and communication technology.