Signals and Transforms in Linear Systems Analysis


Book Description

Signals and Transforms in Linear Systems Analysis covers the subject of signals and transforms, particularly in the context of linear systems theory. Chapter 2 provides the theoretical background for the remainder of the text. Chapter 3 treats Fourier series and integrals. Particular attention is paid to convergence properties at step discontinuities. This includes the Gibbs phenomenon and its amelioration via the Fejer summation techniques. Special topics include modulation and analytic signal representation, Fourier transforms and analytic function theory, time-frequency analysis and frequency dispersion. Fundamentals of linear system theory for LTI analogue systems, with a brief account of time-varying systems, are covered in Chapter 4 . Discrete systems are covered in Chapters 6 and 7. The Laplace transform treatment in Chapter 5 relies heavily on analytic function theory as does Chapter 8 on Z -transforms. The necessary background on complex variables is provided in Appendix A. This book is intended to serve as a text on signals and transforms for a first year one semester graduate course, primarily for electrical engineers.




Linear Systems and Signals


Book Description

Incorporating new problems and examples, the second edition of Linear Systems and Signals features MATLAB® material in each chapter and at the back of the book. It gives clear descriptions of linear systems and uses mathematics not only to prove axiomatic theory, but also to enhance physical and intuitive understanding.




Signal Processing and Linear Systems


Book Description

"This text presents a comprehensive treatment of signal processing and linear systems suitable for undergraduate students in electrical engineering, It is based on Lathi's widely used book, Linear Systems and Signals, with additional applications to communications, controls, and filtering as well as new chapters on analog and digital filters and digital signal processing.This volume's organization is different from the earlier book. Here, the Laplace transform follows Fourier, rather than the reverse; continuous-time and discrete-time systems are treated sequentially, rather than interwoven. Additionally, the text contains enough material in discrete-time systems to be used not only for a traditional course in signals and systems but also for an introductory course in digital signal processing. In Signal Processing and Linear Systems Lathi emphasizes the physical appreciation of concepts rather than the mere mathematical manipulation of symbols. Avoiding the tendency to treat engineering as a branch of applied mathematics, he uses mathematics not so much to prove an axiomatic theory as to enhance physical and intuitive understanding of concepts. Wherever possible, theoretical results are supported by carefully chosen examples and analogies, allowing students to intuitively discover meaning for themselves"--




Signals and Systems Analysis In Biomedical Engineering


Book Description

The first edition of this text, based on the author's 30 years of teaching and research on neurosensory systems, helped biomedical engineering students and professionals strengthen their skills in the common network of applied mathematics that ties together the diverse disciplines that comprise this field. Updated and revised to include new materia




Signals and Linear Systems


Book Description




Time-Frequency Analysis and Synthesis of Linear Signal Spaces


Book Description

Linear signal spaces are of fundamental importance in signal and system theory, communication theory, and modern signal processing. This book proposes a time-frequency analysis of linear signal spaces that is based on two novel time-frequency representations called the `Wigner distribution of a linear signal space' and the `ambiguity function of a linear signal space'. Besides being a useful display and analysis tool, the Wigner distribution of a linear signal space allows the design of high-resolution time-frequency filtering methods. This book develops such methods and applies them to the enhancement, decomposition, estimation, and detection of noisy deterministic and stochastic signals. Formulation of the filtering (estimation, detection) methods in the time-frequency plane yields a direct interpretation of the effect of adding or deleting information, changing parameters, etc. In a sense, the prior information and the signal processing tasks are brought to life in the time-frequency plane. The ambiguity function of a linear signal space, on the other hand, is closely related to a novel maximum-likelihood multipulse estimator of the range and Doppler shift of a slowly fluctuating point target - an estimation problem that is important in radar and sonar. Specifically, the ambiguity function of a linear signal space is relevant to the problem of optimally designing a set of radar pulses. The concepts and methods presented are amply illustrated by examples and pictures. Time-Frequency Analysis and Synthesis of Linear Signal Spaces: Time-Frequency Filters, Signal Detection and Estimation, and Range-Doppler Estimation is an excellent reference and may be used as a text for advanced courses covering the subject.




Numerical Linear Algebra in Signals, Systems and Control


Book Description

The purpose of Numerical Linear Algebra in Signals, Systems and Control is to present an interdisciplinary book, blending linear and numerical linear algebra with three major areas of electrical engineering: Signal and Image Processing, and Control Systems and Circuit Theory. Numerical Linear Algebra in Signals, Systems and Control will contain articles, both the state-of-the-art surveys and technical papers, on theory, computations, and applications addressing significant new developments in these areas. The goal of the volume is to provide authoritative and accessible accounts of the fast-paced developments in computational mathematics, scientific computing, and computational engineering methods, applications, and algorithms. The state-of-the-art surveys will benefit, in particular, beginning researchers, graduate students, and those contemplating to start a new direction of research in these areas. A more general goal is to foster effective communications and exchange of information between various scientific and engineering communities with mutual interests in concepts, computations, and workable, reliable practices.




Linear Dynamic Systems and Signals


Book Description

The author's twelve years of experience with linear systems and signals are reflected in this comprehensive book. The book contains detailed linear systems theory essentials. The intent of this book is to develop the unified techniques to recognize and solve linear dynamical system problems regardless of their origin. Includes Space state techniques as the time domain approach for studying linear systems. Provides a solid foundation on linear dynamic systems and corresponding systems using the dynamic system point of view. Parallels continuous- and discrete-time linear systems throughout to help users grasp the similarities and differences of each. Three part organization: Part I covers frequency-domain approach to linear dynamic systems, Part II covers the time-domain approach to linear dynamic systems, and Part III discusses the linear system approach to electrical engineering, to allow the user to focus of the subject matter as it pertains to their needs. For anyone interested in linear systems and signals




Signal Processing for Neuroscientists


Book Description

Signal Processing for Neuroscientists introduces analysis techniques primarily aimed at neuroscientists and biomedical engineering students with a reasonable but modest background in mathematics, physics, and computer programming. The focus of this text is on what can be considered the 'golden trio' in the signal processing field: averaging, Fourier analysis, and filtering. Techniques such as convolution, correlation, coherence, and wavelet analysis are considered in the context of time and frequency domain analysis. The whole spectrum of signal analysis is covered, ranging from data acquisition to data processing; and from the mathematical background of the analysis to the practical application of processing algorithms. Overall, the approach to the mathematics is informal with a focus on basic understanding of the methods and their interrelationships rather than detailed proofs or derivations. One of the principle goals is to provide the reader with the background required to understand the principles of commercially available analyses software, and to allow him/her to construct his/her own analysis tools in an environment such as MATLAB®. - Multiple color illustrations are integrated in the text - Includes an introduction to biomedical signals, noise characteristics, and recording techniques - Basics and background for more advanced topics can be found in extensive notes and appendices - A Companion Website hosts the MATLAB scripts and several data files: http://www.elsevierdirect.com/companion.jsp?ISBN=9780123708670