Applications of Digital Signal Processing


Book Description

Some applications of digital signal processing in telecommunications. Digital processing in audio signals. Digital processing of speech. Digital image processing. Applications of digital signal processing to radar. Sonar signal processing. Digital signal processing in geophysics.




Digital Signal Processing Techniques and Applications in Radar Image Processing


Book Description

A self-contained approach to DSP techniques and applications in radar imaging The processing of radar images, in general, consists of three major fields: Digital Signal Processing (DSP); antenna and radar operation; and algorithms used to process the radar images. This book brings together material from these different areas to allow readers to gain a thorough understanding of how radar images are processed. The book is divided into three main parts and covers: * DSP principles and signal characteristics in both analog and digital domains, advanced signal sampling, and interpolation techniques * Antenna theory (Maxwell equation, radiation field from dipole, and linear phased array), radar fundamentals, radar modulation, and target-detection techniques (continuous wave, pulsed Linear Frequency Modulation, and stepped Frequency Modulation) * Properties of radar images, algorithms used for radar image processing, simulation examples, and results of satellite image files processed by Range-Doppler and Stolt interpolation algorithms The book fully utilizes the computing and graphical capability of MATLAB? to display the signals at various processing stages in 3D and/or cross-sectional views. Additionally, the text is complemented with flowcharts and system block diagrams to aid in readers' comprehension. Digital Signal Processing Techniques and Applications in Radar Image Processing serves as an ideal textbook for graduate students and practicing engineers who wish to gain firsthand experience in applying DSP principles and technologies to radar imaging.




Digital Signal Processing and Spectral Analysis for Scientists


Book Description

This book covers the basics of processing and spectral analysis of monovariate discrete-time signals. The approach is practical, the aim being to acquaint the reader with the indications for and drawbacks of the various methods and to highlight possible misuses. The book is rich in original ideas, visualized in new and illuminating ways, and is structured so that parts can be skipped without loss of continuity. Many examples are included, based on synthetic data and real measurements from the fields of physics, biology, medicine, macroeconomics etc., and a complete set of MATLAB exercises requiring no previous experience of programming is provided. Prior advanced mathematical skills are not needed in order to understand the contents: a good command of basic mathematical analysis is sufficient. Where more advanced mathematical tools are necessary, they are included in an Appendix and presented in an easy-to-follow way. With this book, digital signal processing leaves the domain of engineering to address the needs of scientists and scholars in traditionally less quantitative disciplines, now facing increasing amounts of data.




Digital Signal Processing


Book Description

Digital Signal Processing, Second Edition enables electrical engineers and technicians in the fields of biomedical, computer, and electronics engineering to master the essential fundamentals of DSP principles and practice. Many instructive worked examples are used to illustrate the material, and the use of mathematics is minimized for easier grasp of concepts. As such, this title is also useful to undergraduates in electrical engineering, and as a reference for science students and practicing engineers. The book goes beyond DSP theory, to show implementation of algorithms in hardware and software. Additional topics covered include adaptive filtering with noise reduction and echo cancellations, speech compression, signal sampling, digital filter realizations, filter design, multimedia applications, over-sampling, etc. More advanced topics are also covered, such as adaptive filters, speech compression such as PCM, u-law, ADPCM, and multi-rate DSP and over-sampling ADC. New to this edition: MATLAB projects dealing with practical applications added throughout the book New chapter (chapter 13) covering sub-band coding and wavelet transforms, methods that have become popular in the DSP field New applications included in many chapters, including applications of DFT to seismic signals, electrocardiography data, and vibration signals All real-time C programs revised for the TMS320C6713 DSK Covers DSP principles with emphasis on communications and control applications Chapter objectives, worked examples, and end-of-chapter exercises aid the reader in grasping key concepts and solving related problems Website with MATLAB programs for simulation and C programs for real-time DSP




Applications of Digital Signal Processing to Audio and Acoustics


Book Description

Karlheinz Brandenburg and Mark Kahrs With the advent of multimedia, digital signal processing (DSP) of sound has emerged from the shadow of bandwidth limited speech processing. Today, the main appli cations of audio DSP are high quality audio coding and the digital generation and manipulation of music signals. They share common research topics including percep tual measurement techniques and analysis/synthesis methods. Smaller but nonetheless very important topics are hearing aids using signal processing technology and hardware architectures for digital signal processing of audio. In all these areas the last decade has seen a significant amount of application oriented research. The topics covered here coincide with the topics covered in the biannual work shop on “Applications of Signal Processing to Audio and Acoustics”. This event is sponsored by the IEEE Signal Processing Society (Technical Committee on Audio and Electroacoustics) and takes place at Mohonk Mountain House in New Paltz, New York. A short overview of each chapter will illustrate the wide variety of technical material presented in the chapters of this book. John Beerends: Perceptual Measurement Techniques. The advent of perceptual measurement techniques is a byproduct of the advent of digital coding for both speech and high quality audio signals. Traditional measurement schemes are bad estimates for the subjective quality after digital coding/decoding. Listening tests are subject to sta tistical uncertainties and the basic question of repeatability in a different environment.




Immersive Audio Signal Processing


Book Description

This graduate-level text lays out the foundation of DSP for audio and the fundamentals of auditory perception, then goes on to discuss immersive audio rendering and synthesis, the digital equalization of room acoustics, and various DSP implementations. It covers a variety of topics and up-to-date results in immersive audio processing research: immersive audio synthesis and rendering, multichannel room equalization, audio selective signal cancellation, multirate signal processing for audio applications, surround sound processing, psychoacoustics and its incorporation in audio signal processing algorithms for solving various problems, and DSP implementations of audio processing algorithms on semiconductor devices.




Digital Signal Processing and Applications with the TMS320C6713 and TMS320C6416 DSK


Book Description

Digital Signal Processing and Applications with the TMS320C6713 and TMS320C6416 DSK Now in a new edition—the most comprehensive, hands-on introduction to digital signal processing The first edition of Digital Signal Processing and Applications with the TMS320C6713 and TMS320C6416 DSK is widely accepted as the most extensive text available on the hands-on teaching of Digital Signal Processing (DSP). Now, it has been fully updated in this valuable Second Edition to be compatible with the latest version (3.1) of Texas Instruments Code Composer Studio (CCS) development environment. Maintaining the original’s comprehensive, hands-on approach that has made it an instructor’s favorite, this new edition also features: Added program examples that illustrate DSP concepts in real-time and in the laboratory Expanded coverage of analog input and output New material on frame-based processing A revised chapter on IIR, which includes a number of floating-point example programs that explore IIR filters more comprehensively More extensive coverage of DSP/BIOS All programs listed in the text—plus additional applications—which are available on a companion website No other book provides such an extensive or comprehensive set of program examples to aid instructors in teaching DSP in a laboratory using audio frequency signals—making this an ideal text for DSP courses at the senior undergraduate and postgraduate levels. It also serves as a valuable resource for researchers, DSP developers, business managers, and technology solution providers who are looking for an overview and examples of DSP algorithms implemented using the TMS320C6713 and TMS320C6416 DSK.




Applied Digital Signal Processing and Applications


Book Description

Due to the rapid development of technologies, digital information playing a key role in our daily life. In the past signal processing appeared in various concepts in more traditional courses where the analog and discrete components were used to achieve the various objectives. However, in the 21th century, with the rapid growth of computing power in terms of speed and memory capacity and the intervention of artificial intelligent, machine /deep learning algorithms, IoT, Cloud computing and automation introduced a tremendous growth in signal processing applications. Therefore, digital signal processing has become such a critical component in contemporary science and technology that many tasks would not be attempted without it. It is a truly interdisciplinary subject that draws from synergistic developments involving many disciplines. The developers should be able to solve problems with an innovation, creativity and active initiators of novel ideas. However, the learning and teaching has been changed from conventional and tradition education to outcome based education. Therefore, this book prepared on a Problem-based approach and outcome based education strategies. Where the problems incorporate most of the basic principles and proceeds towards implementation of more complex algorithms. Students required to formulate in a way to achieve a well-defined goals under the guidance of their instructor. This book follows a holistic approach and presents discrete-time processing as a seamless continuation of continuous-time signals and systems, beginning with a review of continuous-time signals and systems, frequency response, and filtering. The synergistic combination of continuous-time and discrete-time perspectives leads to a deeper appreciation and understanding of DSP concepts and practices.




Digital Signal Processing for Measurement Systems


Book Description

This excellent Senior undergraduate/graduate textbook offers an unprecedented measurement of science perspective on DSP theory and applications, a wealth of definitions and real-life examples making it invaluable for students, while practical.




Practical Applications in Digital Signal Processing


Book Description

The Only DSP Book 100% Focused on Step-by-Step Design and Implementation of Real Devices and Systems in Hardware and Software Practical Applications in Digital Signal Processing is the first DSP title to address the area that even the excellent engineering textbooks of today tend to omit. This book fills a large portion of that omission by addressing circuits and system applications that most design engineers encounter in the modern signal processing industry. This book includes original work in the areas of Digital Data Locked Loops (DLLs), Digital Automatic Gain Control (dAGC), and the design of fast elastic store memory used for synchronizing independently clocked asynchronous data bit streams. It also contains detailed design discussions on Cascaded Integrator Comb (CIC) filters, including the seldom-covered topic of bit pruning. Other topics not extensively covered in other modern textbooks, but detailed here, include analog and digital signal tuning, complex-to-real conversion, the design of digital channelizers, and the techniques of digital frequency synthesis. This book also contains an appendix devoted to the techniques of writing mixed-language C\C++ Fortran programs. Finally, this book contains very extensive review material covering important engineering mathematical tools such as the Fourier series, the Fourier transform, the z transform, and complex variables. Features of this book include * Thorough coverage of the complex-to-real conversion of digital signals * A complete tutorial on digital frequency synthesis * Lengthy discussion of analog and digital tuning and signal translation * Detailed coverage of the design of elastic store memory * A comprehensive study of the design of digital data locked loops * Complete coverage of the design of digital channelizers * A detailed treatment on the design of digital automatic gain control * Detailed techniques for the design of digital and multirate filters * Extensive coverage of the CIC filter, including the topic of bit pruning * An extensive review of complex variables * An extensive review of the Fourier series, and continuous and discrete Fourier transforms * An extensive review of the z transform