Silicon-Germanium Heterojunction Bipolar Transistors for Mm-wave Systems Technology, Modeling and Circuit Applications


Book Description

The semiconductor industry is a fundamental building block of the new economy, there is no area of modern life untouched by the progress of nanoelectronics. The electronic chip is becomingan ever-increasing portion of system solutions, starting initially from less than 5% in the 1970 microcomputer era, to more than 60% of the final cost of a mobile telephone, 50% of the price of a personal computer (representing nearly 100% of the functionalities) and 30% of the price of a monitor in the early 2000’s.Interest in utilizing the (sub-)mm-wave frequency spectrum for commercial and research applications has also been steadily increasing. Such applications, which constitute a diverse but sizeable future market, span a large variety of areas such as health, material science, mass transit, industrial automation, communications, and space exploration.Silicon-Germanium Heterojunction Bipolar Transistors for mm-Wave Systems Technology, Modeling and Circuit Applications provides an overview of results of the DOTSEVEN EU research project, and as such focusses on key material developments for mm-Wave Device Technology. It starts with the motivation at the beginning of the project and a summary of its major achievements. The subsequent chapters provide a detailed description of the obtained research results in the various areas of process development, device simulation, compact device modeling, experimental characterization, reliability, (sub-)mm-wave circuit design and systems.




State-of-the-Art of Millimeter-Wave Silicon Technology


Book Description

This book examines the critical differences between current and next-generation Si technologies (CMOS, BiCMOS and SiC) and technology platforms (e.g. system-on-chip) in mm-wave wireless applications. We provide a basic overview of the two technologies from a technical standpoint, followed by a review of the state-of-the-art of several key building blocks in wireless systems. The influences of system requirements on the choice of semiconductor technology are vital to understanding the merits of CMOS and BiCMOS devices – e.g., output power, battery life, adjacent channel interference, cost restrictions, and so forth. These requirements, in turn, affect component-level design and performance metrics of oscillators, mixers, power and low-noise amplifiers, as well as phase-locked loops and data converters. Finally, the book offers a peek into the next generation of wireless technologies such as THz -band systems and future 6G applications.




Millimeter-Wave Integrated Circuits


Book Description

This peer-reviewed book explores the methodologies that are used for effective research, design and innovation in the vast field of millimeter-wave circuits, and describes how these have to be modified to fit the uniqueness of high-frequency nanoelectronics design. Each chapter focuses on a specific research challenge related to either small form factors or higher operating frequencies. The book first examines nanodevice scaling and the emerging electronic design automation tools that can be used in millimeter-wave research, as well as the singular challenges of combining deep-submicron and millimeter-wave design. It also demonstrates the importance of considering, in the millimeter-wave context, system-level design leading to differing packaging options. Further, it presents integrated circuit design methodologies for all major transceiver blocks typically employed at millimeter-wave frequencies, as these methodologies are normally fundamentally different from the traditional design methodologies used in analogue and lower-frequency electronics. Lastly, the book discusses the methodologies of millimeter-wave research and design for extreme or harsh environments, rebooting electronics, the additional opportunities for terahertz research, and the main differences between the approaches taken in millimeter-wave research and terahertz research.




Silicon-Germanium Heterojunction Bipolar Transistors for mm-Wave Systems: Technology, Modeling and Circuit Applications


Book Description

The semiconductor industry is a fundamental building block of the new economy, there is no area of modern life untouched by the progress of nanoelectronics. The electronic chip is becoming an ever-increasing portion of system solutions, starting initially from less than 5% in the 1970 microcomputer era, to more than 60% of the final cost of a mobile telephone, 50% of the price of a personal computer (representing nearly 100% of the functionalities) and 30% of the price of a monitor in the early 2000's. Interest in utilizing the (sub-)mm-wave frequency spectrum for commercial and research applications has also been steadily increasing. Such applications, which constitute a diverse but sizeable future market, span a large variety of areas such as health, material science, mass transit, industrial automation, communications, and space exploration. Silicon-Germanium Heterojunction Bipolar Transistors for mm-Wave Systems Technology, Modeling and Circuit Applications provides an overview of results of the DOTSEVEN EU research project, and as such focusses on key material developments for mm-Wave Device Technology. It starts with the motivation at the beginning of the project and a summary of its major achievements. The subsequent chapters provide a detailed description of the obtained research results in the various areas of process development, device simulation, compact device modeling, experimental characterization, reliability, (sub-)mm-wave circuit design and systems.




Fundamentals of RF and Microwave Techniques and Technologies


Book Description

The increase of consumer, medical and sensors electronics using radio frequency (RF) and microwave (MW) circuits has implications on overall performances if design is not robust and optimized for a given applications. The current and later generation communication systems and Internet of Thing (IoT) demand for robust electronic circuits with optimized performance and functionality, but low cost, size, and power consumption. As a result, there is a need for a textbook that provides a comprehensive treatment of the subject. This book provides state-of-the-art coverage of RF and Microwave Techniques and Technologies, covers important topics: transmission-line theory, passive and semiconductor devices, active and passive microwave circuits and receiver systems, as well as antennas, noise and digital signal modulation schemes. With an emphasis on theory, design, and applications, this book is targeted to students, teachers, scientists, and practicing design engineers who are interested in broadening their knowledge of RF and microwave electronic circuit design. Readers will also benefit from a unique integration of theory and practice, provides the readers a solid understanding of the RF and microwave concepts, active and passive components, antenna, and modulation schemes. Readers will learn to solve common design problems ranging from selection of components, matching networks to biasing and stability, and digital modulation techniques. More importantly, it provides basic understanding in the analysis and design of RF and microwave circuits in a manner that is practiced in industry. This make sure that the know-how learned in this book can be effortlessly and straightway put into practice without any obstacles.




New Materials and Devices Enabling 5G Applications and Beyond


Book Description

New Materials and Devices for 5G Applications and Beyond focuses on the materials, device architectures and enabling integration schemes for 5G applications and emerging technologies. It gives a comprehensive overview of the trade-offs, challenges and unique properties of novel upcoming technologies. Starting from the application side and its requirements, the book examines different technologies under consideration for the different functions, both more conventional to exploratory, and within this context the book provides guidance to the reader on how to possibly optimize the system for a particular application. This book aims at guiding the reader through the technologies required to enable 5G applications, with the main focus on mm-wave frequencies, up to THz. New Materials and Devises for 5G Applications and Beyond is suitable for industrial researchers and development engineers, and researchers in materials science, device engineering and circuit design. - Reviews challenges and emerging opportunities for materials, devices, and integration to enable 5G technologies - Includes discussion of technologies such as RF-MEMs, RF FINFETs, and transistors based on current and emerging materials (InP, GaN, etc.) - Focuses on mm-wave frequencies up to the terahertz regime




Millimeter-Wave Power Amplifiers


Book Description

This book provides a detailed review of millimeter-wave power amplifiers, discussing design issues and performance limitations commonly encountered in light of the latest research. Power amplifiers, which are able to provide high levels of output power and linearity while being easily integrated with surrounding circuitry, are a crucial component in wireless microwave systems. The book is divided into three parts, the first of which introduces readers to mm-wave wireless systems and power amplifiers. In turn, the second focuses on design principles and EDA concepts, while the third discusses future trends in power amplifier research. The book provides essential information on mm-wave power amplifier theory, as well as the implementation options and technologies involved in their effective design, equipping researchers, circuit designers and practicing engineers to design, model, analyze, test and implement high-performance, spectrally clean and energy-efficient mm-wave systems.




Compact Modeling


Book Description

Most of the recent texts on compact modeling are limited to a particular class of semiconductor devices and do not provide comprehensive coverage of the field. Having a single comprehensive reference for the compact models of most commonly used semiconductor devices (both active and passive) represents a significant advantage for the reader. Indeed, several kinds of semiconductor devices are routinely encountered in a single IC design or in a single modeling support group. Compact Modeling includes mostly the material that after several years of IC design applications has been found both theoretically sound and practically significant. Assigning the individual chapters to the groups responsible for the definitive work on the subject assures the highest possible degree of expertise on each of the covered models.




Silicon-germanium Heterojunction Bipolar Transistors


Book Description

This informative, new resource presents the first comprehensive treatment of silicon-germanium heterojunction bipolar transistors (SiGe HBTs). It offers you a complete, from-the-ground-up understanding of SiGe HBT devices and technology, from a very broad perspective. The book covers motivation, history, materials, fabrication, device physics, operational principles, and circuit-level properties associated with this new cutting-edge semiconductor device technology. Including over 400 equations and more than 300 illustrations, this hands-on reference shows you in clear and concise language how to design, simulate, fabricate, and measure a SiGe HBT.