Modulated Measurement and Engineering Systems for Microwave Power Transistors


Book Description

The complexity requirements of future wireless communication systems now indeed demand a more general theoretically robust design methodology for nonlinear circuits, such as the power amplifiers. The present design methodology for nonlinear Radio Frequency components and circuits has become a key hindrance in the evaluation, development and testing of modern communication systems. The fundamental nature of this engineering challenge makes it highly unlikely to be addressed within the competitive Radio Frequency industry with short-term profitability, time to market and risk aversion considerations.

The book , therefore, includes developing advanced waveform measurement setups, multi-tone measurement techniques, characterization and modelling of nonlinear distortion in microwave power transistors and design of high-power and spectrum-efficient RF power amplifiers for future wireless communication systems. Further enlists the key impediments in Power Amplifier design through the application of waveform engineering to embrace simultaneously efficiency and linearity objectives of power amplifier design as well as investigate the most robust and appropriate behavioral model formulation that includes memory effects.




Microwave Wireless Communications


Book Description

To design and develop fast and effective microwave wireless systems today involves addressing the three different ‘levels’: Device, circuit, and system. This book presents the links and interactions between the three different levels rather than providing just a comprehensive coverage of one specific level. With the aim of overcoming the sectional knowledge of microwave engineers, this will be the first book focused on explaining how the three different levels interact by taking the reader on a journey through the different levels going from the theoretical background to the practical applications. Explains the links and interactions between the three different design levels of wireless communication transmitters: device, circuit, and system Presents state-of-the-art, challenges, and future trends in the field of wireless communication systems Covers all aspects of both mature and cutting-edge technologies for semiconductor devices for wireless communication applications Many circuit designs outlining the limitations derived from the available transistor technologies and system requirements Explains how new microwave measurement techniques can represent an essential tool for microwave modellers and designers




RF and Microwave Power Amplifier Design


Book Description

This is a rigorous tutorial on radio frequency and microwave power amplifier design, teaching the circuit design techniques that form the microelectronic backbones of modern wireless communications systems. Suitable for self-study, corporate training, or Senior/Graduate classroom use, the book combines analytical calculations and computer-aided design techniques to arm electronic engineers with every possible method to improve their designs and shorten their design time cycles.




RF and mm-Wave Power Generation in Silicon


Book Description

RF and mm-Wave Power Generation in Silicon presents the challenges and solutions of designing power amplifiers at RF and mm-Wave frequencies in a silicon-based process technology. It covers practical power amplifier design methodologies, energy- and spectrum-efficient power amplifier design examples in the RF frequency for cellular and wireless connectivity applications, and power amplifier and power generation designs for enabling new communication and sensing applications in the mm-Wave and THz frequencies. With this book you will learn: Power amplifier design fundamentals and methodologies Latest advances in silicon-based RF power amplifier architectures and designs and their integration in wireless communication systems State-of-the-art mm-Wave/THz power amplifier and power generation circuits and systems in silicon Extensive coverage from fundamentals to advanced design topics, focusing on various layers of abstraction: from device modeling and circuit design strategy to advanced digital and mixed-signal architectures for highly efficient and linear power amplifiers New architectures for power amplifiers in the cellar and wireless connectivity covering detailed design methodologies and state-of-the-art performances Detailed design techniques, trade-off analysis and design examples for efficiency enhancement at power back-off and linear amplification for spectrally-efficient non-constant envelope modulations Extensive coverage of mm-Wave power-generation techniques from the early days of the 60 GHz research to current state-of the-art reconfigurable, digital mm-Wave PA architectures Detailed analysis of power generation challenges in the higher mm-Wave and THz frequencies and novel technical solutions for a wide range for potential applications, including ultrafast wireless communication to sensing, imaging and spectroscopy Contributions from the world-class experts from both academia and industry




Modeling and Design Techniques for RF Power Amplifiers


Book Description

Achieve higher levels of performance, integration, compactness, and cost-effectiveness in the design and modeling of radio-frequency (RF) power amplifiers RF power amplifiers are important components of any wireless transmitter, but are often the limiting factors in achieving better performance and lower cost in a wireless communication system—presenting the RF IC design community with many challenges. The next-generation technological advances presented in this book are the result of cutting-edge research in the area of large-signal device modeling and RF power amplifier design at the Georgia Institute of Technology, and have the potential to significantly address issues of performance and cost-effectiveness in this area. Richly complemented with hundreds of figures and equations, Modeling and Design Techniques for RF Power Amplifiers introduces and explores the most important topics related to RF power amplifier design under one concise cover. With a focus on efficiency enhancement techniques and the latest advances in the field, coverage includes: Device modeling for CAD Empirical modeling of bipolar devices Scalable modeling of RF MOSFETs Power amplifier IC design Power amplifier design in silicon Efficiency enhancement of RF power amplifiers The description of state-of-the-art techniques makes this book a valuable and handy reference for practicing engineers and researchers, while the breadth of coverage makes it an ideal text for graduate- and advanced undergraduate-level courses in the area of RF power amplifier design and modeling.




RF and Microwave Transistor Oscillator Design


Book Description

The increase of consumer electronics and communications applications using Radio Frequency (RF) and microwave circuits has implications for oscillator design. Applications working at higher frequencies and using novel technologies have led to a demand for more robust circuits with higher performance and functionality, but decreased costs, size and power consumption. As a result, there is also a need for more efficient oscillators. This book presents up to date information on all aspects of oscillator design, enabling a selection of the best oscillator topologies with optimized noise reduction and electrical performance. RF and Microwave Transistor Oscillator Design covers: analyses of non-linear circuit design methods including spectral-domain analysis, time-domain analysis and the quasilinear method; information on noise in oscillators including chapters on varactor and oscillator frequency tuning, CMOS voltage-controlled oscillators and wideband voltage-controlled oscillators; information on the stability of oscillations, with discussions on the stability of multi-resonant circuits and the phase plane method; optimized design and circuit techniques, beginning with the empirical and analytic design approaches, moving on to the high-efficiency design technique; general operation and design principles of oscillators, including a section on the historical aspects of oscillator configurations. A valuable reference for practising RF and Microwave designers and engineers, RF and Microwave Transistor Oscillator Design is also useful for lecturers, advanced students and research and design (R&D) personnel.




Nonlinear Microwave and RF Circuits


Book Description

This newly and thoroughly revised edition of the 1988 Artech House classic offers you a comprehensive, up-to-date treatment of nonlinear microwave and RF circuits. It gives you a current, in-depth understanding of the theory of nonlinear circuit analysis with a focus on Volterra-series and harmonic-balance methods. You get practical guidance in designing nonlinear circuits and modeling solid-state devices for nonlinear circuit analysis by computer. Moreover, you learn how characteristics of such models affect the analysis of these circuits. Critical new topics include microwave heterojunction bipolar transistors (HBTs), heterojunction FETs (HEMTs), silicon MOSFETs, modern IC design approaches, new methods of harmonic-balance analysis, multitone analysis methods, Fourier methods for multitone problems, and artificial frequency mapping. What's more, the second edition has been updated to include discussions on nonlinear analysis of oscillators and design issues relating to RF and wireless technology. More than 120 illustrations support key topics throughout the book.




Modeling and Characterization of RF and Microwave Power FETs


Book Description

This book is a comprehensive exposition of FET modeling, and is a must-have resource for seasoned professionals and new graduates in the RF and microwave power amplifier design and modeling community. In it, you will find descriptions of characterization and measurement techniques, analysis methods, and the simulator implementation, model verification and validation procedures that are needed to produce a transistor model that can be used with confidence by the circuit designer. Written by semiconductor industry professionals with many years' device modeling experience in LDMOS and III-V technologies, this was the first book to address the modeling requirements specific to high-power RF transistors. A technology-independent approach is described, addressing thermal effects, scaling issues, nonlinear modeling, and in-package matching networks. These are illustrated using the current market-leading high-power RF technology, LDMOS, as well as with III-V power devices.




Silicon RF Power MOSFETS


Book Description

"The world-wide proliferation of cellular networks has revolutionized telecommunication systems. The transition from Analog to Digital RF technology enabled substantial increase in voice traffic using available spectrum, and subsequently the delivery of digitally based text messaging, graphics and even streaming video. The deployment of digital networks has required migration to multi-carrier RF power amplifiers with stringent demands on linearity and efficiency. This book describes the physics, design considerations and RF performance of silicon power Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) that are at the heart of the power amplifiers. The recent invention and commercialization of RF power MOSFETs based on the super-linear mode of operation is described in this book for the first time. In addition to the analytical treatment of the physics, extensive description of transistor operation is provided by using the results of numerical simulations. Many novel power MOSFET structures are analyzed and their performance is compared with those of the laterally-diffused (LD) MOSFET that are currently used in 2G and 3G networks."--BOOK JACKET.Title Summary field provided by Blackwell North America, Inc. All Rights Reserved