Evolution of Silicon Sensor Technology in Particle Physics


Book Description

In the post era of the Z and W discovery, after the observation of Jets at UA1 and UA2 at CERN, John Ellis visioned at a HEP conference at Lake Tahoe, California in 1983 “To proceed with high energy particle physics, one has to tag the avour of the quarks!” This statement re ects the need for a highly precise tracking device, being able to resolve secondary and tertiary vertices within high-particle densities. Since the d- tance between the primary interaction point and the secondary vertex is proportional tothelifetimeoftheparticipatingparticle,itisanexcellentquantitytoidentifypar- cle avour in a very fast and precise way. In colliding beam experiments this method was applied especially to tag the presence of b quarks within particle jets. It was rst introduced in the DELPHI experiment at LEP but soon followed by all collider - periments to date. The long expected t quark discovery was possible mainly with the help of the CDF silicon vertex tracker, providing the b quark information. In the beginning of the 21st century the new LHC experiments are beginning to take 2 shape. CMS with its 206m of silicon area is perfectly suited to cope with the high luminosity environment. Even larger detectors are envisioned for the far future, like the SiLC project for the International Linear Collider. Silicon sensors matured from small 1in. single-sided devices to large 6in. double-sided, double metal detectors and to 6in. single-sided radiation hard sensors.




Silicon Sensors and Circuits


Book Description




Automotive Radar Sensors in Silicon Technologies


Book Description

One of the leading causes of automobile accidents is the slow reaction of the driver while responding to a hazardous situation. State-of-the-art wireless electronics can automate several driving functions, leading to significant reduction in human error and improvement in vehicle safety. With continuous transistor scaling, silicon fabrication technology now has the potential to substantially reduce the cost of automotive radar sensors. This book bridges an existing gap between information available on dependable system/architecture design and circuit design. It provides the background of the field and detailed description of recent research and development of silicon-based radar sensors. System-level requirements and circuit topologies for radar transceivers are described in detail. Holistic approaches towards designing radar sensors are validated with several examples of highly-integrated radar ICs in silicon technologies. Circuit techniques to design millimeter-wave circuits in silicon technologies are discussed in depth.




Silicon Sensors and Actuators


Book Description

This book thoroughly reviews the present knowledge on silicon micromechanical transducers and addresses emerging and future technology challenges. Readers will acquire a solid theoretical and practical background that will allow them to analyze the key performance aspects of devices, critically judge a fabrication process, and then conceive and design new ones for future applications. Envisioning a future complex versatile microsystem, the authors take inspiration from Richard Feynman’s visionary talk “There is Plenty of Room at the Bottom” to propose that the time has come to see silicon sensors as part of a “Feynman Roadmap” instead of the “More-than-Moore” technology roadmap. The sharing of the author’s industrially proven track record of development, design, and manufacturing, along with their visionary approach to the technology, will allow readers to jump ahead in their understanding of the core of the topic in a very effective way. Students, researchers, engineers, and technologists involved in silicon-based sensor and actuator research and development will find a wealth of useful and groundbreaking information in this book.




An Introduction to Ultra-Fast Silicon Detectors


Book Description

The book describes the development of innovative silicon sensors known as ultra-fast silicon detectors for use in the space-time tracking of charge particles. The first comprehensive collection of information on the topic, otherwise currently scattered in existing literature, this book presents a comprehensive introduction to the development of ultra-fast silicon detectors with the latest technology and applications from the field. It will be an ideal reference for graduate and postgraduates studying high energy and particle physics and engineering, in addition to researchers in the area. Key features Authored by a team of subject area specialists, whose research group first invented ultra-fast silicon detectors The first book on the topic to explain the details of the design of silicon sensors for 4-dimensional tracking Presents state-of-the-art results, and prospects for further performance evolutions The Open Access version of this book, available at www.taylorfrancis.com/e/9780367646295 , has been made available under a Creative Commons Attribution-Non Commercial-No Derivatives 4.0 license.




An Introduction to Ultra-Fast Silicon Detectors


Book Description

The book describes the development of innovative silicon sensors known as ultra-fast silicon detectors for use in the space-time tracking of charge particles. The first comprehensive collection of information on the topic, otherwise currently scattered in existing literature, this book presents a comprehensive introduction to the development of ultra-fast silicon detectors with the latest technology and applications from the field. It will be an ideal reference for graduate and postgraduates studying high energy and particle physics and engineering, in addition to researchers in the area. Key features Authored by a team of subject area specialists, whose research group first invented ultra-fast silicon detectors The first book on the topic to explain the details of the design of silicon sensors for 4-dimensional tracking Presents state-of-the-art results, and prospects for further performance evolutions The Open Access version of this book, available at www.taylorfrancis.com/e/9780367646295 , has been made available under a Creative Commons Attribution-Non Commercial-No Derivatives 4.0 license.




High Performance Silicon Imaging


Book Description

High Performance Silicon Imaging: Fundamentals and Applications of CMOS and CCD Sensors, Second Edition, covers the fundamentals of silicon image sensors, addressing existing performance issues and current and emerging solutions. Silicon imaging is a fast growing area of the semiconductor industry. Its use in cell phone cameras is already well established, with emerging applications including web, security, automotive and digital cinema cameras. The book has been revised to reflect the latest state-of-the art developments in the field, including 3D imaging, advances in achieving lower signal noise, and new applications for consumer markets. The fundamentals section has also been expanded to include a chapter on the characterization and testing of CMOS and CCD sensors that is crucial to the success of new applications. This book is an excellent resource for both academics and engineers working in the optics, photonics, semiconductor and electronics industries. - Covers the fundamentals of silicon-based image sensors and technical advances, focusing on performance issues - Looks at image sensors in applications, such as mobile phones, scientific imaging, and TV broadcasting, and in automotive, consumer and biomedical applications - Addresses the theory behind 3D imaging and 3D sensor development, including challenges and opportunities




The Piezojunction Effect in Silicon Integrated Circuits and Sensors


Book Description

This book describes techniques that can reduce mechanical-stress-induced inaccuracy and long-term instability in chips. The authors also show that the piezojunction effect can be applied for new types of mechanical-sensor structures. Thermo-mechanical stress is induced when packaged chips cool down to the temperature of application.




Silicon Sensors


Book Description




Porous Silicon: From Formation to Application: Biomedical and Sensor Applications, Volume Two


Book Description

Porous silicon is rapidly attracting increasing interest from various fields, including optoelectronics, microelectronics, photonics, medicine, chemistry, and biosensing. This nanostructured and biodegradable material has a range of unique properties that make it ideal for many applications. For example, the pores and surface chemistry of the mater