SIMBIOS Project 2002 Annual Report
Author : Giulietta S. Fargion
Publisher :
Page : 168 pages
File Size : 19,67 MB
Release : 2003
Category : Oceanography
ISBN :
Author : Giulietta S. Fargion
Publisher :
Page : 168 pages
File Size : 19,67 MB
Release : 2003
Category : Oceanography
ISBN :
Author :
Publisher :
Page : 224 pages
File Size : 25,68 MB
Release : 2003
Category : Oceanography
ISBN :
Author : Giulietta S. Fargion
Publisher :
Page : 88 pages
File Size : 17,8 MB
Release : 2003
Category : Earth resources technology satellites
ISBN :
Author : Giulietta S. Fargion
Publisher :
Page : 196 pages
File Size : 18,46 MB
Release : 2002
Category : Oceanography
ISBN :
Author : Giulietta S. Fargion
Publisher :
Page : 176 pages
File Size : 13,95 MB
Release : 2001
Category : Oceanography
ISBN :
Author : Robert Frouin
Publisher : SPIE-International Society for Optical Engineering
Page : 276 pages
File Size : 44,14 MB
Release : 2003
Category : Science
ISBN :
Author :
Publisher :
Page : 64 pages
File Size : 45,87 MB
Release : 2002
Category : Colorimetric analysis
ISBN :
Author :
Publisher :
Page : 498 pages
File Size : 13,92 MB
Release : 2005
Category : Marine animals
ISBN :
Author : Robert Frouin
Publisher : SPIE-International Society for Optical Engineering
Page : 640 pages
File Size : 33,73 MB
Release : 2003
Category : Science
ISBN :
Author : Ni-Bin Chang
Publisher : CRC Press
Page : 508 pages
File Size : 23,20 MB
Release : 2018-02-21
Category : Technology & Engineering
ISBN : 1498774342
In the last few years the scientific community has realized that obtaining a better understanding of interactions between natural systems and the man-made environment across different scales demands more research efforts in remote sensing. An integrated Earth system observatory that merges surface-based, air-borne, space-borne, and even underground sensors with comprehensive and predictive capabilities indicates promise for revolutionizing the study of global water, energy, and carbon cycles as well as land use and land cover changes. The aim of this book is to present a suite of relevant concepts, tools, and methods of integrated multisensor data fusion and machine learning technologies to promote environmental sustainability. The process of machine learning for intelligent feature extraction consists of regular, deep, and fast learning algorithms. The niche for integrating data fusion and machine learning for remote sensing rests upon the creation of a new scientific architecture in remote sensing science that is designed to support numerical as well as symbolic feature extraction managed by several cognitively oriented machine learning tasks at finer scales. By grouping a suite of satellites with similar nature in platform design, data merging may come to help for cloudy pixel reconstruction over the space domain or concatenation of time series images over the time domain, or even both simultaneously. Organized in 5 parts, from Fundamental Principles of Remote Sensing; Feature Extraction for Remote Sensing; Image and Data Fusion for Remote Sensing; Integrated Data Merging, Data Reconstruction, Data Fusion, and Machine Learning; to Remote Sensing for Environmental Decision Analysis, the book will be a useful reference for graduate students, academic scholars, and working professionals who are involved in the study of Earth systems and the environment for a sustainable future. The new knowledge in this book can be applied successfully in many areas of environmental science and engineering.