Simple Models of Complex Nuclei


Book Description

applications to the structure of atomic nuclei. The author systematically develops these models from the elementary level, through an introduction to tensor algebra, to the use of group theory in spectroscopy. The book's extensive and detailed appendix includes a large selection of useful formulae of tensor algebra and spectroscopy. The serious graduate student, as well as the professional physicist, will find this complete treatment of the shell model to be an invaluable addition to the literature.




Simple Models of Complex Nuclei


Book Description

applications to the structure of atomic nuclei. The author systematically develops these models from the elementary level, through an introduction to tensor algebra, to the use of group theory in spectroscopy. The book's extensive and detailed appendix includes a large selection of useful formulae of tensor algebra and spectroscopy. The serious graduate student, as well as the professional physicist, will find this complete treatment of the shell model to be an invaluable addition to the literature.




Theory of Complex Nuclei


Book Description













Nuclear Physics


Book Description

Dramatic progress has been made in all branches of physics since the National Research Council's 1986 decadal survey of the field. The Physics in a New Era series explores these advances and looks ahead to future goals. The series includes assessments of the major subfields and reports on several smaller subfields, and preparation has begun on an overview volume on the unity of physics, its relationships to other fields, and its contributions to national needs. Nuclear Physics is the latest volume of the series. The book describes current activity in understanding nuclear structure and symmetries, the behavior of matter at extreme densities, the role of nuclear physics in astrophysics and cosmology, and the instrumentation and facilities used by the field. It makes recommendations on the resources needed for experimental and theoretical advances in the coming decade.




Scientific Activities


Book Description




SU(3) Symmetry in Atomic Nuclei


Book Description

This book provides an understandable review of SU(3) representations, SU(3) Wigner–Racah algebra and the SU(3) ⊃ SO(3) integrity basis operators, which are often considered to be difficult and are avoided by most nuclear physicists. Explaining group algebras that apply to specific physical systems and discussing their physical applications, the book is a useful resource for researchers in nuclear physics. At the same time it helps experimentalists to interpret data on rotational nuclei by using SU(3) symmetry that appears in a variety of nuclear models, such as the shell model, pseudo-SU(3) model, proxy-SU(3) model, symplectic Sp(6, R) model, various interacting boson models, various interacting boson–fermion models, and cluster models. In addition to presenting the results from all these models, the book also describes a variety of statistical results that follow from the SU(3) symmetry.




Electron Scattering From Complex Nuclei V36A


Book Description

Electron Scattering from Complex Nuclei, Part A covers the historical phases of experimental development in elastic and inelastic electron scattering. This five-chapter text presents the logical development of the underlying theory of electron scattering. After briefly discussing the history of electron scattering from nuclei, this book goes on describing the theory of elastic scattering from a point nucleus, both with Born approximation and the accurate solution of the Dirac equation, as well as the corresponding experiments. The following chapter considers the analysis of nuclear charge distributions experiments using Born cross section and phase-shift methods. A chapter is devoted to the complete elastic and inelastic Born theory. This chapter also deals with the derivation of a theorem on the general form of the electron-nucleus scattering cross section, with an emphasis on the influence of the neglected transverse interaction on the cross section. The last chapter presents the status of elastic scattering along with some topics in muonic atoms that also determine nuclear charge densities. This book will be of great benefit to physicists, researchers, and graduate students who are interested in nuclear structure problems.