Simplicity, Inference and Modelling


Book Description

The idea that simplicity matters in science is as old as science itself, with the much cited example of Ockham's Razor, 'entia non sunt multiplicanda praeter necessitatem': entities are not to be multiplied beyond necessity. A problem with Ockham's razor is that nearly everybody seems to accept it, but few are able to define its exact meaning and to make it operational in a non-arbitrary way. Using a multidisciplinary perspective including philosophers, mathematicians, econometricians and economists, this 2002 monograph examines simplicity by asking six questions: what is meant by simplicity? How is simplicity measured? Is there an optimum trade-off between simplicity and goodness-of-fit? What is the relation between simplicity and empirical modelling? What is the relation between simplicity and prediction? What is the connection between simplicity and convenience? The book concludes with reflections on simplicity by Nobel Laureates in Economics.




Simplicity, Inference and Modeling


Book Description

The idea that simplicity matters in science is as old as science itself, with the much cited example of Ockham's Razor, 'entia non sunt multiplicanda praeter necessitatem': entities are not to be multiplied beyond necessity. Using a multidisciplinary perspective this monograph asks 'What is meant by simplicity?'




Statistical Inference as Severe Testing


Book Description

Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.




Models for Probability and Statistical Inference


Book Description

This concise, yet thorough, book is enhanced with simulations and graphs to build the intuition of readers Models for Probability and Statistical Inference was written over a five-year period and serves as a comprehensive treatment of the fundamentals of probability and statistical inference. With detailed theoretical coverage found throughout the book, readers acquire the fundamentals needed to advance to more specialized topics, such as sampling, linear models, design of experiments, statistical computing, survival analysis, and bootstrapping. Ideal as a textbook for a two-semester sequence on probability and statistical inference, early chapters provide coverage on probability and include discussions of: discrete models and random variables; discrete distributions including binomial, hypergeometric, geometric, and Poisson; continuous, normal, gamma, and conditional distributions; and limit theory. Since limit theory is usually the most difficult topic for readers to master, the author thoroughly discusses modes of convergence of sequences of random variables, with special attention to convergence in distribution. The second half of the book addresses statistical inference, beginning with a discussion on point estimation and followed by coverage of consistency and confidence intervals. Further areas of exploration include: distributions defined in terms of the multivariate normal, chi-square, t, and F (central and non-central); the one- and two-sample Wilcoxon test, together with methods of estimation based on both; linear models with a linear space-projection approach; and logistic regression. Each section contains a set of problems ranging in difficulty from simple to more complex, and selected answers as well as proofs to almost all statements are provided. An abundant amount of figures in addition to helpful simulations and graphs produced by the statistical package S-Plus(r) are included to help build the intuition of readers.




Regression Analysis


Book Description

PLEASE UPDATE SAGE INDIA AND SAGE UK ADDRESSES ON IMPRINT PAGE.




Simplicity


Book Description

Attempts to show that the simplicity of a hypothesis can be measured by attending to how well it answers certain kinds of questions.




Information Theory, Inference and Learning Algorithms


Book Description

Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independent component analysis, and neural networks. Uniquely, the book covers state-of-the-art error-correcting codes, including low-density-parity-check codes, turbo codes, and digital fountain codes - the twenty-first-century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, the book is ideal for self-learning, and for undergraduate or graduate courses. It also provides an unparalleled entry point for professionals in areas as diverse as computational biology, financial engineering and machine learning.




Probability Theory and Statistical Inference


Book Description

This empirical research methods course enables informed implementation of statistical procedures, giving rise to trustworthy evidence.




A Guide to Econometrics


Book Description

Dieses etwas andere Lehrbuch bietet keine vorgefertigten Rezepte und Problemlösungen, sondern eine kritische Diskussion ökonometrischer Modelle und Methoden: voller überraschender Fragen, skeptisch, humorvoll und anwendungsorientiert. Sein Erfolg gibt ihm Recht.




Accurate Case Outcome Modeling


Book Description

This volume advocates accurate case outcome prediction that does not rely on symmetric modeling. To that end, it provides theory construction and testing applications in several sub-disciplines of business and the social sciences to illustrate how to move away from symmetric theory construction. Each chapter constructs case outcome theory and includes empirical analysis of outcomes. Chapter 1 provides a foundation of symmetric variable directional-relationship theory construction and null hypothesis significance testing versus asymmetric case outcome theory construction and somewhat precise outcome testing, while Chapters 2–6 investigate these principles through a range of applications. This volume will be very useful to researchers and professionals in manufacturing, service, consulting, management, marketing, organizational studies, and more. It will also be an excellent resource for advanced statistics students in building and testing case outcome models. Data sets are included so that readers can replicate findings presented in each chapter, and grow to present and test additional theories.