Simulated Annealing and Boltzmann Machines


Book Description

Wiley-Interscience Series in Discrete Mathematics and Optimization Advisory Editors Ronald L. Graham Jan Karel Lenstra Robert E. Tarjan Discrete Mathematics and Optimization involves the study of finite structures. It is one of the fastest growing areas in mathematics today. The level and depth of recent advances in the area and the wide applicability of its evolving techniques point to the rapidity with which the field is moving from its beginnings to maturity and presage the ever-increasing interaction between it and computer science. The Series provides a broad coverage of discrete mathematics and optimization, ranging over such fields as combinatorics, graph theory, enumeration, mathematical programming and the analysis of algorithms, and including such topics as Ramsey theory, transversal theory, block designs, finite geometries, Polya theory, graph and matroid algorithms, network flows, polyhedral combinatorics and computational complexity. The Wiley - Interscience Series in Discrete Mathematics and Optimization will be a substantial part of the record of this extraordinary development. Recent titles in the Series: Search Problems Rudolf Ahlswede, University of Bielefeld, Federal Republic of Germany Ingo Wegener, Johann Wolfgang Goethe University, Frankfurt, Federal Republic of Germany The problems of search, exploration, discovery and identification are of key importance in a wide variety of applications. This book will be of great interest to all those concerned with searching, sorting, information processing, design of experiments and optimal allocation of resources. 1987 Introduction to Optimization E. M. L. Beale FRS, Scicon Ltd, Milton Keynes, and Imperial College, London This book is intended as an introduction to the many topics covered by the term 'optimization', with special emphasis on applications in industry. It is divided into three parts. The first part covers unconstrained optimization, the second describes the methods used to solve linear programming problems, and the third covers nonlinear programming, integer programming and dynamic programming. The book is intended for senior undergraduate and graduate students studying optimization as part of a course in mathematics, computer science or engineering. 1988










Simulated Annealing


Book Description

This book presents state of the art contributes to Simulated Annealing (SA) that is a well-known probabilistic meta-heuristic. It is used to solve discrete and continuous optimization problems. The significant advantage of SA over other solution methods has made it a practical solution method for solving complex optimization problems. Book is consisted of 13 chapters, classified in single and multiple objectives applications and it provides the reader with the knowledge of SA and several applications. We encourage readers to explore SA in their work, mainly because it is simple and can determine extremely very good results.







Hands-On Machine Learning on Google Cloud Platform


Book Description

Unleash Google's Cloud Platform to build, train and optimize machine learning models Key Features Get well versed in GCP pre-existing services to build your own smart models A comprehensive guide covering aspects from data processing, analyzing to building and training ML models A practical approach to produce your trained ML models and port them to your mobile for easy access Book Description Google Cloud Machine Learning Engine combines the services of Google Cloud Platform with the power and flexibility of TensorFlow. With this book, you will not only learn to build and train different complexities of machine learning models at scale but also host them in the cloud to make predictions. This book is focused on making the most of the Google Machine Learning Platform for large datasets and complex problems. You will learn from scratch how to create powerful machine learning based applications for a wide variety of problems by leveraging different data services from the Google Cloud Platform. Applications include NLP, Speech to text, Reinforcement learning, Time series, recommender systems, image classification, video content inference and many other. We will implement a wide variety of deep learning use cases and also make extensive use of data related services comprising the Google Cloud Platform ecosystem such as Firebase, Storage APIs, Datalab and so forth. This will enable you to integrate Machine Learning and data processing features into your web and mobile applications. By the end of this book, you will know the main difficulties that you may encounter and get appropriate strategies to overcome these difficulties and build efficient systems. What you will learn Use Google Cloud Platform to build data-based applications for dashboards, web, and mobile Create, train and optimize deep learning models for various data science problems on big data Learn how to leverage BigQuery to explore big datasets Use Google’s pre-trained TensorFlow models for NLP, image, video and much more Create models and architectures for Time series, Reinforcement Learning, and generative models Create, evaluate, and optimize TensorFlow and Keras models for a wide range of applications Who this book is for This book is for data scientists, machine learning developers and AI developers who want to learn Google Cloud Platform services to build machine learning applications. Since the interaction with the Google ML platform is mostly done via the command line, the reader is supposed to have some familiarity with the bash shell and Python scripting. Some understanding of machine learning and data science concepts will be handy




Simulated Annealing: Theory and Applications


Book Description

It isn't that they can't see the solution. It is Approach your problems from the right end and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. O. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van Oulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks or increasingly specialized topics. However, the "tree" of knowledg~ of mathematics and related fields does not grow only by putting forth new branches. It also ·happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the ~d and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.




The Boltzmann Machine: A Survey and Generalization


Book Description

A tutorial is presented describing a general machine learning theory which spawns a class of energy minimizing machines useful in model identification, optimization, and associative memory. Special realizations of the theory include the Boltzmann machine and the Hopfield neural network. The theory is reinforced by appendices addressing particular facets of the machine, ranging from gradient descent to simulated annealing. The treatment is systematic, beginning with the description of the energy function. A defining relationship is established between the energy function and the optimal solution. Following, both classical and new learning algorithms are presented (directing the adaption of the free parameters) for numerically minimizing such function to yield the optimal solution. Finally, both computational burden and performance are assessed for several small-scale applications to date. Keywords: Neural networks, Boltzmann machine, Gibbs machine, Energy minimizing neural networks, Simulated annealing. (jhd).




Experience with Quantum Annealing Computation


Book Description

The past decade has seen four generations of quantum annealing processors, with qubit counts increasing from 512 on the D-Wave Two (released in 2013), to over 5000 on Advantage processors available in 2023. During this time, expanding access for researchers has sparked enormous growth in publications and in the body of knowledge surrounding capabilities, applications, and best practices in use of these novel computing systems. This Research Topic will invite submissions on all aspects of empirical experience with annealing-based quantum computers. The intention is to present a broad survey of the current state of knowledge about quantum annealing hardware, performance, software infrastructures, and applications.




Handbook of Metaheuristics


Book Description

This book provides both the research and practitioner communities with a comprehensive coverage of the metaheuristic methodologies that have proven to be successful in a wide variety of real-world problem settings. Moreover, it is these metaheuristic strategies that hold particular promise for success in the future. The various chapters serve as stand alone presentations giving both the necessary background underpinnings as well as practical guides for implementation.