Simulation for Designing Clinical Trials


Book Description

Providing more than just a comprehensive history, critical vocabulary, insightful compilation of motivations, and clear explanation of the state-of-the-art of modern clinical trial simulation, this book supplies a rigorous framework for employing simulation as an experiment, according to a predefined simulation plan, that reflects good simulation p




Clinical Trial Simulations


Book Description

This edition includes both updates and new uses and issues concerning CTS, along with case studies of how clinical trial simulations are being applied in various therapeutic and application areas. Importantly, the book expands on the utility of CTS for informing decisions during drug development and regulatory review. Each chapter author was selected on the basis of demonstrated expertise in state-of-the-art application of CTS. The target audience for this volume includes researchers and scientists who wish to consider use of simulations in the design, analysis, or regulatory review and guidance of clinical trials. This book does not embrace all aspects of trial design, nor is it intended as a complete recipe for using computers to design trials. Rather, it is an information source that enables the reader to gain understanding of essential background and knowledge for practical applications of simulation for clinical trial design and analysis. It is assumed that the reader has a working understanding of pharmacokinetics and pharmacodynamics, modeling, pharmacometric analyses, and/or the drug development and regulatory processes.




Principles and Practice of Clinical Trials


Book Description

This is a comprehensive major reference work for our SpringerReference program covering clinical trials. Although the core of the Work will focus on the design, analysis, and interpretation of scientific data from clinical trials, a broad spectrum of clinical trial application areas will be covered in detail. This is an important time to develop such a Work, as drug safety and efficacy emphasizes the Clinical Trials process. Because of an immense and growing international disease burden, pharmaceutical and biotechnology companies continue to develop new drugs. Clinical trials have also become extremely globalized in the past 15 years, with over 225,000 international trials ongoing at this point in time. Principles in Practice of Clinical Trials is truly an interdisciplinary that will be divided into the following areas: 1) Clinical Trials Basic Perspectives 2) Regulation and Oversight 3) Basic Trial Designs 4) Advanced Trial Designs 5) Analysis 6) Trial Publication 7) Topics Related Specific Populations and Legal Aspects of Clinical Trials The Work is designed to be comprised of 175 chapters and approximately 2500 pages. The Work will be oriented like many of our SpringerReference Handbooks, presenting detailed and comprehensive expository chapters on broad subjects. The Editors are major figures in the field of clinical trials, and both have written textbooks on the topic. There will also be a slate of 7-8 renowned associate editors that will edit individual sections of the Reference.




Small Clinical Trials


Book Description

Clinical trials are used to elucidate the most appropriate preventive, diagnostic, or treatment options for individuals with a given medical condition. Perhaps the most essential feature of a clinical trial is that it aims to use results based on a limited sample of research participants to see if the intervention is safe and effective or if it is comparable to a comparison treatment. Sample size is a crucial component of any clinical trial. A trial with a small number of research participants is more prone to variability and carries a considerable risk of failing to demonstrate the effectiveness of a given intervention when one really is present. This may occur in phase I (safety and pharmacologic profiles), II (pilot efficacy evaluation), and III (extensive assessment of safety and efficacy) trials. Although phase I and II studies may have smaller sample sizes, they usually have adequate statistical power, which is the committee's definition of a "large" trial. Sometimes a trial with eight participants may have adequate statistical power, statistical power being the probability of rejecting the null hypothesis when the hypothesis is false. Small Clinical Trials assesses the current methodologies and the appropriate situations for the conduct of clinical trials with small sample sizes. This report assesses the published literature on various strategies such as (1) meta-analysis to combine disparate information from several studies including Bayesian techniques as in the confidence profile method and (2) other alternatives such as assessing therapeutic results in a single treated population (e.g., astronauts) by sequentially measuring whether the intervention is falling above or below a preestablished probability outcome range and meeting predesigned specifications as opposed to incremental improvement.




Innovative Strategies, Statistical Solutions and Simulations for Modern Clinical Trials


Book Description

"This is truly an outstanding book. [It] brings together all of the latest research in clinical trials methodology and how it can be applied to drug development.... Chang et al provide applications to industry-supported trials. This will allow statisticians in the industry community to take these methods seriously." Jay Herson, Johns Hopkins University The pharmaceutical industry's approach to drug discovery and development has rapidly transformed in the last decade from the more traditional Research and Development (R & D) approach to a more innovative approach in which strategies are employed to compress and optimize the clinical development plan and associated timelines. However, these strategies are generally being considered on an individual trial basis and not as part of a fully integrated overall development program. Such optimization at the trial level is somewhat near-sighted and does not ensure cost, time, or development efficiency of the overall program. This book seeks to address this imbalance by establishing a statistical framework for overall/global clinical development optimization and providing tactics and techniques to support such optimization, including clinical trial simulations. Provides a statistical framework for achieve global optimization in each phase of the drug development process. Describes specific techniques to support optimization including adaptive designs, precision medicine, survival-endpoints, dose finding and multiple testing. Gives practical approaches to handling missing data in clinical trials using SAS. Looks at key controversial issues from both a clinical and statistical perspective. Presents a generous number of case studies from multiple therapeutic areas that help motivate and illustrate the statistical methods introduced in the book. Puts great emphasis on software implementation of the statistical methods with multiple examples of software code (both SAS and R). It is important for statisticians to possess a deep knowledge of the drug development process beyond statistical considerations. For these reasons, this book incorporates both statistical and "clinical/medical" perspectives.




Adaptive Design Methods in Clinical Trials


Book Description

With new statistical and scientific issues arising in adaptive clinical trial design, including the U.S. FDA's recent draft guidance, a new edition of one of the first books on the topic is needed. Adaptive Design Methods in Clinical Trials, Second Edition reflects recent developments and regulatory positions on the use of adaptive designs in clini




Bayesian Designs for Phase I-II Clinical Trials


Book Description

Reliably optimizing a new treatment in humans is a critical first step in clinical evaluation since choosing a suboptimal dose or schedule may lead to failure in later trials. At the same time, if promising preclinical results do not translate into a real treatment advance, it is important to determine this quickly and terminate the clinical evaluation process to avoid wasting resources. Bayesian Designs for Phase I–II Clinical Trials describes how phase I–II designs can serve as a bridge or protective barrier between preclinical studies and large confirmatory clinical trials. It illustrates many of the severe drawbacks with conventional methods used for early-phase clinical trials and presents numerous Bayesian designs for human clinical trials of new experimental treatment regimes. Written by research leaders from the University of Texas MD Anderson Cancer Center, this book shows how Bayesian designs for early-phase clinical trials can explore, refine, and optimize new experimental treatments. It emphasizes the importance of basing decisions on both efficacy and toxicity.




Monte Carlo Simulation for the Pharmaceutical Industry


Book Description

Helping you become a creative, logical thinker and skillful "simulator," Monte Carlo Simulation for the Pharmaceutical Industry: Concepts, Algorithms, and Case Studies provides broad coverage of the entire drug development process, from drug discovery to preclinical and clinical trial aspects to commercialization. It presents the theories and metho




The Prevention and Treatment of Missing Data in Clinical Trials


Book Description

Randomized clinical trials are the primary tool for evaluating new medical interventions. Randomization provides for a fair comparison between treatment and control groups, balancing out, on average, distributions of known and unknown factors among the participants. Unfortunately, these studies often lack a substantial percentage of data. This missing data reduces the benefit provided by the randomization and introduces potential biases in the comparison of the treatment groups. Missing data can arise for a variety of reasons, including the inability or unwillingness of participants to meet appointments for evaluation. And in some studies, some or all of data collection ceases when participants discontinue study treatment. Existing guidelines for the design and conduct of clinical trials, and the analysis of the resulting data, provide only limited advice on how to handle missing data. Thus, approaches to the analysis of data with an appreciable amount of missing values tend to be ad hoc and variable. The Prevention and Treatment of Missing Data in Clinical Trials concludes that a more principled approach to design and analysis in the presence of missing data is both needed and possible. Such an approach needs to focus on two critical elements: (1) careful design and conduct to limit the amount and impact of missing data and (2) analysis that makes full use of information on all randomized participants and is based on careful attention to the assumptions about the nature of the missing data underlying estimates of treatment effects. In addition to the highest priority recommendations, the book offers more detailed recommendations on the conduct of clinical trials and techniques for analysis of trial data.




Classical and Adaptive Clinical Trial Designs Using ExpDesign Studio


Book Description

ExpDesign Studio facilitates more efficient clinical trial design This book introduces pharmaceutical statisticians, scientists, researchers, and others to ExpDesign Studio software for classical and adaptive designs of clinical trials. It includes the Professional Version 5.0 of ExpDesign Studio software that frees pharmaceutical professionals to focus on drug development and related challenges while the software handles the essential calculations and computations. After a hands-on introduction to the software and an overview of clinical trial designs encompassing numerous variations, Classical and Adaptive Clinical Trial Designs Using ExpDesign Studio: Covers both classical and adaptive clinical trial designs, monitoring, and analyses Explains various classical and adaptive designs including groupsequential, sample-size reestimation, dropping-loser, biomarker-adaptive, and response-adaptive randomization designs Includes instructions for over 100 design methods that have been implemented in ExpDesign Studio and step-by-step demos as well as real-world examples Emphasizes applications, yet covers key mathematical formulations Introduces readers to additional toolkits in ExpDesign Studio that help in designing, monitoring, and analyzing trials, such as the adaptive monitor, graphical calculator, the probability calculator, the confidence interval calculator, and more Presents comprehensive technique notes for sample-size calculation methods, grouped by the number of arms, the trial endpoint, and the analysis basis Written with practitioners in mind, this is an ideal self-study guide for not only statisticians, but also scientists, researchers, and professionals in the pharmaceutical industry, contract research organizations (CROs), and regulatory bodies. It's also a go-to reference for biostatisticians, pharmacokinetic specialists, and principal investigators involved in clinical trials. ERRATUM Classical and Adaptive Clinical Trial Designs Using ExpDesign Studio By Mark Chang The license for the ExpDesign Studio software on the CD included with this book is good for one-year after installation of the software. Prior to the expiration of this period, the software will generate a reminder about renewal for the license. The user should contact CTriSoft International (the owners of ExpDesign Studio) at www.CTriSoft.net or by email at [email protected], about renewal for the license. This should have been made clear in the first printing of this book. We apologize for this error.