Advances in Applied Digital Human Modeling


Book Description

This volume is concerned with digital human modeling. The utility of this area of research is to aid the design of systems that are benefitted from reducing the need for physical prototyping and incorporating ergonomics and human factors earlier in design processes. Digital human models are representations of some aspects of a human that can be ins




Modeling, Simulation and Optimization of Bipedal Walking


Book Description

The model-based investigation of motions of anthropomorphic systems is an important interdisciplinary research topic involving specialists from many fields such as Robotics, Biomechanics, Physiology, Orthopedics, Psychology, Neurosciences, Sports, Computer Graphics and Applied Mathematics. This book presents a study of basic locomotion forms such as walking and running is of particular interest due to the high demand on dynamic coordination, actuator efficiency and balance control. Mathematical models and numerical simulation and optimization techniques are explained, in combination with experimental data, which can help to better understand the basic underlying mechanisms of these motions and to improve them. Example topics treated in this book are Modeling techniques for anthropomorphic bipedal walking systems Optimized walking motions for different objective functions Identification of objective functions from measurements Simulation and optimization approaches for humanoid robots Biologically inspired control algorithms for bipedal walking Generation and deformation of natural walking in computer graphics Imitation of human motions on humanoids Emotional body language during walking Simulation of biologically inspired actuators for bipedal walking machines Modeling and simulation techniques for the development of prostheses Functional electrical stimulation of walking.




Skill Training in Multimodal Virtual Environments


Book Description

The advent of augmented reality technologies used to assist human operators in complex manipulative operations—has brought an urgency to research into the modeling and training of human skills in Virtual Environments. However, modeling a specific act still represents a challenge in cognitive science. The same applies for the control of humanoid robots and the replication of skilled behavior of avatars in Virtual Environments. Skill Training in Multimodal Virtual Environments presents the scientific background, research outcomes, engineering developments, and evaluation studies conducted during the five years (2006-2011) of the project SKILLS–Multimodal Interfaces for Capturing and Transfer of Skill, funded by the European Commission under its 6th Framework Programme for Research and Technological Development. The SKILLS project evaluated how to exploit robotics and virtual environment technologies for the training of specific skills. This book details the novel approach used in the study to cope with skill acquisition, setting aside the mainstream assumptions of common computer-assisted training simulators. It explores how the SKILLS approach generated new training scenarios that allow users to practice new experiences in the performance of the devised task. Using a carefully designed approach that balances science with practicality, the book explores how virtual and augmented reality systems can be designed to address the skill transfer and training in different application contexts. The application of the same roadmap to skills originating from domains such as sports, rehabilitation, industrial environment, and surgery sets this book apart. It demonstrates how technology-oriented training conditions can yield better results than more traditional training conditions.




Advances in Visual Computing


Book Description

The two volume set LNCS 5358 and LNCS 5359 constitutes the refereed proceedings of the 4th International Symposium on Visual Computing, ISVC 2008, held in Las Vegas, NV, USA, in December 2008. The 102 revised full papers and 70 poster papers presented together with 56 full and 8 poster papers of 8 special tracks were carefully reviewed and selected from more than 340 submissions. The papers are organized in topical sections on computer graphics, visualization, shape/recognition, video analysis and event recognition, virtual reality, reconstruction, motion, face/gesture, and computer vision applications. The 8 additional special tracks address issues such as object recognition, real-time vision algorithm implementation and application, computational bioimaging and visualization, discrete and computational geometry, soft computing in image processing and computer vision, visualization and simulation on immersive display devices, analysis and visualization of biomedical visual data, as well as image analysis for remote sensing data.




Mobile Robotics: Solutions And Challenges - Proceedings Of The Twelfth International Conference On Climbing And Walking Robots And The Support Technologies For Mobile Machines


Book Description

This book provides state-of-the-art scientific and engineering research findings and developments in the area of mobile robotics and associated support technologies. The book contains peer reviewed articles presented at the CLAWAR 2008 conference. Robots are no longer confined to industrial manufacturing environments with a great deal of interest being invested in the use of robots outside the factory environment. The CLAWAR conference series, established as a high profile international event, acts as a platform for the dissemination of research and development findings and supports such a trend to address the current interest in mobile robotics in meeting the needs of mankind in various sectors of the society. These include personal care, public health, and services in the domestic, public and industrial environments. The editors of the book have extensive research experience and publications in the area of robotics specifically in mobile robotics, and their experience is reflected in the careful editing of the contents in the book.




Legged Robots that Balance


Book Description

This book, by a leading authority on legged locomotion, presents exciting engineering and science, along with fascinating implications for theories of human motor control. It lays fundamental groundwork in legged locomotion, one of the least developed areas of robotics, addressing the possibility of building useful legged robots that run and balance. The book describes the study of physical machines that run and balance on just one leg, including analysis, computer simulation, and laboratory experiments. Contrary to expectations, it reveals that control of such machines is not particularly difficult. It describes how the principles of locomotion discovered with one leg can be extended to systems with several legs and reports preliminary experiments with a quadruped machine that runs using these principles. Raibert's work is unique in its emphasis on dynamics and active balance, aspects of the problem that have played a minor role in most previous work. His studies focus on the central issues of balance and dynamic control, while avoiding several problems that have dominated previous research on legged machines. Marc Raibert is Associate Professor of Computer Science and Robotics at Carnegie-Mellon University and on the editorial board of The MIT Press journal, Robotics Research. Legged Robots That Balanceis fifteenth in the Artificial Intelligence Series, edited by Patrick Winston and Michael Brady.




Encyclopedia of Computer Graphics and Games


Book Description

Encyclopedia of Computer Graphics and Games (ECGG) is a unique reference resource tailored to meet the needs of research and applications for industry professionals and academic communities worldwide. The ECGG covers the history, technologies, and trends of computer graphics and games. Editor Newton Lee, Institute for Education, Research, and Scholarships, Los Angeles, CA, USA Academic Co-Chairs Shlomo Dubnov, Department of Music and Computer Science and Engineering, University of California San Diego, San Diego, CA, USA Patrick C. K. Hung, University of Ontario Institute of Technology, Oshawa, ON, Canada Jaci Lee Lederman, Vincennes University, Vincennes, IN, USA Industry Co-Chairs Shuichi Kurabayashi, Cygames, Inc. & Keio University, Kanagawa, Japan Xiaomao Wu, Gritworld GmbH, Frankfurt am Main, Hessen, Germany Editorial Board Members Leigh Achterbosch, School of Science, Engineering, IT and Physical Sciences, Federation University Australia Mt Helen, Ballarat, VIC, Australia Ramazan S. Aygun, Department of Computer Science, Kennesaw State University, Marietta, GA, USA Barbaros Bostan, BUG Game Lab, Bahçeşehir University (BAU), Istanbul, Turkey Anthony L. Brooks, Aalborg University, Aalborg, Denmark Guven Catak, BUG Game Lab, Bahçeşehir University (BAU), Istanbul, Turkey Alvin Kok Chuen Chan, Cambridge Corporate University, Lucerne, Switzerland Anirban Chowdhury, Department of User Experience and Interaction Design, School of Design (SoD), University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, India Saverio Debernardis, Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari, Italy Abdennour El Rhalibi, Liverpool John Moores University, Liverpool, UK Stefano Ferretti, Department of Computer Science and Engineering, University of Bologna, Bologna, Italy Han Hu, School of Information and Electronics, Beijing Institute of Technology, Beijing, China Ms. Susan Johnston, Select Services Films Inc., Los Angeles, CA, USA Chris Joslin, Carleton University, Ottawa, Canada Sicilia Ferreira Judice, Department of Computer Science, University of Calgary, Calgary, Canada Hoshang Kolivand, Department Computer Science, Faculty of Engineering and Technology, Liverpool John Moores University, Liverpool, UK Dario Maggiorini, Department of Computer Science, University of Milan, Milan, Italy Tim McGraw, Purdue University, West Lafayette, IN, USA George Papagiannakis, ORamaVR S.A., Heraklion, Greece; FORTH-ICS, Heraklion Greece University of Crete, Heraklion, Greece Florian Richoux, Nantes Atlantic Computer Science Laboratory (LINA), Université de Nantes, Nantes, France Andrea Sanna, Dipartimento di Automatica e Informatica, Politecnico di Torino, Turin, Italy Yann Savoye, Institut fur Informatik, Innsbruck University, Innsbruck, Austria Sercan Şengün, Wonsook Kim School of Art, Illinois State University, Normal, IL, USA Ruck Thawonmas, Ritsumeikan University, Shiga, Japan Vinesh Thiruchelvam, Asia Pacific University of Technology & Innovation, Kuala Lumpur, Malaysia Rojin Vishkaie, Amazon, Seattle, WA, USA Duncan A. H. Williams, Digital Creativity Labs, Department of Computer Science, University of York, York, UK Sai-Keung Wong, National Chiao Tung University, Hsinchu, Taiwan Editorial Board Intern Sam Romershausen, Vincennes University, Vincennes, IN, USA




Model Predictive Control in the Process Industry


Book Description

Model Predictive Control is an important technique used in the process control industries. It has developed considerably in the last few years, because it is the most general way of posing the process control problem in the time domain. The Model Predictive Control formulation integrates optimal control, stochastic control, control of processes with dead time, multivariable control and future references. The finite control horizon makes it possible to handle constraints and non linear processes in general which are frequently found in industry. Focusing on implementation issues for Model Predictive Controllers in industry, it fills the gap between the empirical way practitioners use control algorithms and the sometimes abstractly formulated techniques developed by researchers. The text is firmly based on material from lectures given to senior undergraduate and graduate students and articles written by the authors.




Handbook of Human Motion


Book Description

The Handbook of Human Motion is a large cross-disciplinary reference work which covers the many interlinked facets of the science and technology of human motion and its measurement. Individual chapters cover fundamental principles and technological developments, the state-of-the-art and consider applications across four broad and interconnected fields; medicine, sport, forensics and animation. The huge strides in technological advancement made over the past century make it possible to measure motion with unprecedented precision, but also lead to new challenges. This work introduces the many different approaches and systems used in motion capture, including IR and ultrasound, mechanical systems and video, plus some emerging techniques. The large variety of techniques used for the study of motion science in medicine can make analysis a complicated process, but extremely effective for the treatment of the patient when well utilised. The handbook descri bes how motion capture techniques are applied in medicine, and shows how the resulting analysis can help in diagnosis and treatment. A closely related field, sports science involves a combination of in-depth medical knowledge and detailed understanding of performance and training techniques, and motion capture can play an extremely important role in linking these disciplines. The handbook considers which technologies are most appropriate in specific circumstances, how they are applied and how this can help prevent injury and improve sporting performance. The application of motion capture in forensic science and security is reviewed, with chapters dedicated to specific areas including employment law, injury analysis, criminal activity and motion/facial recognition. And in the final area of application, the book describes how novel motion capture techniques have been designed specifically to aid the creation of increasingly realistic animation within films and v ideo games, with Lord of the Rings and Avatar just two examples. Chapters will provide an overview of the bespoke motion capture techniques developed for animation, how these have influenced advances in film and game design, and the links to behavioural studies, both in humans and in robotics. Comprising a cross-referenced compendium of different techniques and applications across a broad field, the Handbook of Human Motion provides the reader with a detailed reference and simultaneously a source of inspiration for future work. The book will be of use to students, researchers, engineers and others working in any field relevant to human motion capture.




Practical Design and Application of Model Predictive Control


Book Description

Practical Design and Application of Model Predictive Control is a self-learning resource on how to design, tune and deploy an MPC using MATLAB® and Simulink®. This reference is one of the most detailed publications on how to design and tune MPC controllers. Examples presented range from double-Mass spring system, ship heading and speed control, robustness analysis through Monte-Carlo simulations, photovoltaic optimal control, and energy management of power-split and air-handling control. Readers will also learn how to embed the designed MPC controller in a real-time platform such as Arduino®. The selected problems are nonlinear and challenging, and thus serve as an excellent experimental, dynamic system to show the reader the capability of MPC. The step-by-step solutions of the problems are thoroughly documented to allow the reader to easily replicate the results. Furthermore, the MATLAB® and Simulink® codes for the solutions are available for free download. Readers can connect with the authors through the dedicated website which includes additional free resources at www.practicalmpc.com. - Illustrates how to design, tune and deploy MPC for projects in a quick manner - Demonstrates a variety of applications that are solved using MATLAB® and Simulink® - Bridges the gap in providing a number of realistic problems with very hands-on training - Provides MATLAB® and Simulink® code solutions. This includes nonlinear plant models that the reader can use for other projects and research work - Presents application problems with solutions to help reinforce the information learned