Single-Arm Phase II Survival Trial Design


Book Description

Single-Arm Phase II Survival Trial Design provides a comprehensive summary to the most commonly- used methods for single-arm phase II trial design with time-to-event endpoints. Single-arm phase II trials are a key component for successfully developing advanced cancer drugs and treatments, particular for target therapy and immunotherapy in which time-to-event endpoints are often the primary endpoints. Most test statistics for single-arm phase II trial design with time-to-event endpoints are not available in commercial software. Key Features: Covers the most frequently used methods for single-arm phase II trial design with time-to-event endpoints in a comprehensive fashion. Provides new material on phase II immunotherapy trial design and phase II trial design with TTP ratio endpoint. Illustrates trial designs by real clinical trial examples Includes R code for all methods proposed in the book, enabling straightforward sample size calculation.




Single-Arm Phase II Survival Trial Design


Book Description

Single-Arm Phase II Survival Trial Design provides a comprehensive summary to the most commonly- used methods for single-arm phase II trial design with time-to-event endpoints. Single-arm phase II trials are a key component for successfully developing advanced cancer drugs and treatments, particular for target therapy and immunotherapy in which time-to-event endpoints are often the primary endpoints. Most test statistics for single-arm phase II trial design with time-to-event endpoints are not available in commercial software. Key Features: Covers the most frequently used methods for single-arm phase II trial design with time-to-event endpoints in a comprehensive fashion. Provides new material on phase II immunotherapy trial design and phase II trial design with TTP ratio endpoint. Illustrates trial designs by real clinical trial examples Includes R code for all methods proposed in the book, enabling straightforward sample size calculation.




Statistical Methods for Survival Trial Design


Book Description

Statistical Methods for Survival Trial Design: With Applications to Cancer Clinical Trials Using R provides a thorough presentation of the principles of designing and monitoring cancer clinical trials in which time-to-event is the primary endpoint. Traditional cancer trial designs with time-to-event endpoints are often limited to the exponential model or proportional hazards model. In practice, however, those model assumptions may not be satisfied for long-term survival trials. This book is the first to cover comprehensively the many newly developed methodologies for survival trial design, including trial design under the Weibull survival models; extensions of the sample size calculations under the proportional hazard models; and trial design under mixture cure models, complex survival models, Cox regression models, and competing-risk models. A general sequential procedure based on the sequential conditional probability ratio test is also implemented for survival trial monitoring. All methodologies are presented with sufficient detail for interested researchers or graduate students.




Randomized Phase II Cancer Clinical Trials


Book Description

In cancer research, a traditional phase II trial is designed as a single-arm trial that compares the experimental therapy to a historical control. This simple trial design has led to several adverse issues, including increased false positivity of phase II trial results and negative phase III trials. To rectify these problems, oncologists and biosta




Small Clinical Trials


Book Description

Clinical trials are used to elucidate the most appropriate preventive, diagnostic, or treatment options for individuals with a given medical condition. Perhaps the most essential feature of a clinical trial is that it aims to use results based on a limited sample of research participants to see if the intervention is safe and effective or if it is comparable to a comparison treatment. Sample size is a crucial component of any clinical trial. A trial with a small number of research participants is more prone to variability and carries a considerable risk of failing to demonstrate the effectiveness of a given intervention when one really is present. This may occur in phase I (safety and pharmacologic profiles), II (pilot efficacy evaluation), and III (extensive assessment of safety and efficacy) trials. Although phase I and II studies may have smaller sample sizes, they usually have adequate statistical power, which is the committee's definition of a "large" trial. Sometimes a trial with eight participants may have adequate statistical power, statistical power being the probability of rejecting the null hypothesis when the hypothesis is false. Small Clinical Trials assesses the current methodologies and the appropriate situations for the conduct of clinical trials with small sample sizes. This report assesses the published literature on various strategies such as (1) meta-analysis to combine disparate information from several studies including Bayesian techniques as in the confidence profile method and (2) other alternatives such as assessing therapeutic results in a single treated population (e.g., astronauts) by sequentially measuring whether the intervention is falling above or below a preestablished probability outcome range and meeting predesigned specifications as opposed to incremental improvement.




Group Sequential Methods with Applications to Clinical Trials


Book Description

Group sequential methods answer the needs of clinical trial monitoring committees who must assess the data available at an interim analysis. These interim results may provide grounds for terminating the study-effectively reducing costs-or may benefit the general patient population by allowing early dissemination of its findings. Group sequential methods provide a means to balance the ethical and financial advantages of stopping a study early against the risk of an incorrect conclusion. Group Sequential Methods with Applications to Clinical Trials describes group sequential stopping rules designed to reduce average study length and control Type I and II error probabilities. The authors present one-sided and two-sided tests, introduce several families of group sequential tests, and explain how to choose the most appropriate test and interim analysis schedule. Their topics include placebo-controlled randomized trials, bio-equivalence testing, crossover and longitudinal studies, and linear and generalized linear models. Research in group sequential analysis has progressed rapidly over the past 20 years. Group Sequential Methods with Applications to Clinical Trials surveys and extends current methods for planning and conducting interim analyses. It provides straightforward descriptions of group sequential hypothesis tests in a form suited for direct application to a wide variety of clinical trials. Medical statisticians engaged in any investigations planned with interim analyses will find this book a useful and important tool.




Bayesian Adaptive Methods for Clinical Trials


Book Description

Already popular in the analysis of medical device trials, adaptive Bayesian designs are increasingly being used in drug development for a wide variety of diseases and conditions, from Alzheimer's disease and multiple sclerosis to obesity, diabetes, hepatitis C, and HIV. Written by leading pioneers of Bayesian clinical trial designs, Bayesian Adapti




Neuroscience Trials of the Future


Book Description

On March 3-4, 2016, the National Academies of Sciences, Engineering, and Medicine's Forum on Neuroscience and Nervous System Disorders held a workshop in Washington, DC, bringing together key stakeholders to discuss opportunities for improving the integrity, efficiency, and validity of clinical trials for nervous system disorders. Participants in the workshop represented a range of diverse perspectives, including individuals not normally associated with traditional clinical trials. The purpose of this workshop was to generate discussion about not only what is feasible now, but what may be possible with the implementation of cutting-edge technologies in the future.




Exact Statistical Inference for Categorical Data


Book Description

Exact Statistical Inference for Categorical Data discusses the way asymptotic approaches have been often used in practice to make statistical inference. This book introduces both conditional and unconditional exact approaches for the data in 2 by 2, or 2 by k contingency tables, and is an ideal reference for users who are interested in having the convenience of applying asymptotic approaches, with less computational time. In addition to the existing conditional exact inference, some efficient, unconditional exact approaches could be used in data analysis to improve the performance of the testing procedure. - Demonstrates how exact inference can be used to analyze data in 2 by 2 tables - Discusses the analysis of data in 2 by k tables using exact inference - Explains how exact inference can be used in genetics




Bayesian Designs for Phase I-II Clinical Trials


Book Description

Reliably optimizing a new treatment in humans is a critical first step in clinical evaluation since choosing a suboptimal dose or schedule may lead to failure in later trials. At the same time, if promising preclinical results do not translate into a real treatment advance, it is important to determine this quickly and terminate the clinical evaluation process to avoid wasting resources. Bayesian Designs for Phase I–II Clinical Trials describes how phase I–II designs can serve as a bridge or protective barrier between preclinical studies and large confirmatory clinical trials. It illustrates many of the severe drawbacks with conventional methods used for early-phase clinical trials and presents numerous Bayesian designs for human clinical trials of new experimental treatment regimes. Written by research leaders from the University of Texas MD Anderson Cancer Center, this book shows how Bayesian designs for early-phase clinical trials can explore, refine, and optimize new experimental treatments. It emphasizes the importance of basing decisions on both efficacy and toxicity.