Connexins


Book Description

Connexins: A Guide is a practical and valuable reference and text covering a wide scope of information about the connexin family of membrane channel proteins. The editors and contributing authors intend for this cutting-edge work to be informative to scientists wishing to learn about the field, as well as to those who are active researchers in this area. Connexins: A Guide masterfully addresses specific needs of the scientific community; it is a comprehensive and comprehensible narrative of the uncommonly diverse connexin field, making previously hard-to-find information easily accessible, while also presenting intelligible insights into the extensive experimental methods and conceptual frameworks necessary to appreciate and understand the important roles that connexin channel proteins play in health and disease.




Single Membrane Channels Formed by Connexins or Pannexins: Focus on the Nervous System


Book Description

Given that the extremely elaborated and dynamic functions performed by the nervous system require the close synchronization of brain cells, complex organisms have developed different mechanisms of intercellular communication. At this regard, paracrine signaling between neighboring cells is currently recognized as one of the most widely distributed mechanisms of synchronization in the brain parenchyma. In mammals, paracrine signaling is in part mediated by single membrane channels formed by connexins (connexons/hemichannels) or pannexins (pannexons), which are two different membrane protein families composed of about 20 and 3 members, respectively. Single membrane channels formed by these proteins serve as aqueous pores permeable to ions and small molecules, allowing the diffusional exchange between the intra- and extracellular milieu. Thus, connexin hemichannels and pannexons permit the release of significant quantities of autocrine/paracrine signaling molecules (e.g., ATP, glutamate, NAD+, adenosine and PGE2) into the extracellular milieu, as well as the uptake of small molecules. An increasing body of evidence has revealed that connexin hemichannels and pannexons play a crucial role in a plethora of brain processes including blood flow regulation, Ca2+ wave propagation, memory consolidation, glucose sensing and cell migration and adhesion. Considering the multiple cell signaling functions of these channels, their dysregulation is proposed not only as potential pathological biomarker, but it has been implicated in the pathogenesis and progression of diverse brain diseases (e.g., meningitis, Alzheimer’s disease and stroke). The aim of this Research Topic is to gather a collection of original research articles, method, protocols, short communications, opinions, perspectives, as well as review articles, providing the latest progress and insights in the field of connexin hemichannels and pannexons in the nervous system. Within this volume we plan to cover from basic research including channel structure, regulation, pharmacology and trafficking; to different biological functions in the physiology (behavior, plasticity, neurogenesis, blood flow control, neuron-glia crosstalk, cell migration and differentiation) as well as in the pathophysiology (neuroinflammation, mutation-related diseases, glial dysfunction and neurodegeneration) of the nervous system. We hope that this collection of articles will serve to understand how the signaling of connexin hemichannels and pannexons influences both normal and pathological brain function.




From Molecules to Networks


Book Description

An understanding of the nervous system at virtually any level of analysis requires an understanding of its basic building block, the neuron. From Molecules to Networks provides the solid foundation of the morphologic, biochemical, and biophysical properties of nerve cells. All chapters have been thoroughly revised for this second edition to reflect the significant advances of the past 5 years. The new edition expands on the network aspects of cellular neurobiology by adding a new chapter, Information Processing in Neural Networks, and on the relation of cell biological processes to various neurological diseases. The new concluding chapter illustrates how the great strides in understanding the biochemical and biophysical properties of nerve cells have led to fundamental insights into important aspects of neurodegenerative disease. - Written and edited by leading experts in the field, the second edition completely and comprehensively updates all chapters of this unique textbook - Discusses emerging new understanding of non-classical molecules that affect neuronal signaling - Full colour, professional graphics throughout - Includes two new chapters: Information Processing in Neural Networks - describes the principles of operation of neural networks and the key circuit motifs that are common to many networks in the nervous system. Molecular and Cellular Mechanisms of Neurodegenerative Disease - introduces the progress made in the last 20 years in elucidating the cellular and molecular mechanisms underlying brain disorders, including Amyotrophic Lateral Sclerosis (ALS), Parkinson disease, and Alzheimer's disease




Electrophysiology of Unconventional Channels and Pores


Book Description

This book is dedicated to the channels and pores that belong to an eclectic and ubiquitous class of unconventional - perhaps at times strange - pore-forming molecules, which nevertheless play fundamental roles in various organisms. These non-canonical channels may take on various and sometimes complex architectures, such as large beta-barrels or lipid-containing pores. They may originate from bacteria, viruses or intracellular organelles. For some of them, the physiologically relevant substrate may indeed be ions, and for others folded polypeptides. Some are released by cells in a soluble form that has the ability to insert into biological membranes to exert its permeabilizing effect. Many of these unconventional pores have been investigated by electrophysiology, which, by its virtue of focusing on a few or even a single unit, has provided invaluable insight into the mechanisms and structure-function relationships of these remarkable membrane entities. The chapters of this book highlight a representative set of these interesting investigations.




From Molecules to Networks


Book Description

An understanding of the nervous system at virtually any level of analysis requires an understanding of its basic building block, the neuron. The third edition of From Molecules to Networks provides the solid foundation of the morphological, biochemical, and biophysical properties of nerve cells. In keeping with previous editions, the unique content focus on cellular and molecular neurobiology and related computational neuroscience is maintained and enhanced. All chapters have been thoroughly revised for this third edition to reflect the significant advances of the past five years. The new edition expands on the network aspects of cellular neurobiology by adding new coverage of specific research methods (e.g., patch-clamp electrophysiology, including applications for ion channel function and transmitter release; ligand binding; structural methods such as x-ray crystallography). Written and edited by leading experts in the field, the third edition completely and comprehensively updates all chapters of this unique textbook and insures that all references to primary research represent the latest results. - The first treatment of cellular and molecular neuroscience that includes an introduction to mathematical modeling and simulation approaches - 80% updated and new content - New Chapter on "Biophysics of Voltage-Gated Ion Channels" - New Chapter on "Synaptic Plasticity" - Includes a chapter on the Neurobiology of Disease - Highly referenced, comprehensive and quantitative - Full color, professional graphics throughout - All graphics are available in electronic version for teaching purposes




Hemichannels; from the molecule to the function


Book Description

Coordinated cell interactions are required to accomplish several complex and dynamic tasks observed in several tissues. Cell function may be coordinated by cell-to-cell communication through gap junctions channels (GJCs). These channels are formed by the serial docking of two hemichannels, which in turn are formed by six protein subunits called connexins (Cxs). It is well known that GJCs are involved in several functions, such as intercellular propagation of calcium waves, spread of electrotonic potentialsand spatial buffering of ions and metabolites. On the other hand, undocked hemichannels, which are not forming GJCs, can also serve other functions as “free hemichannels”. Currently, it is recognized that undocked hemichannels may have functional relevance in cell physiology allowing diffusional exchange of ions and small molecules between intra- and extra-cellular compartments. Additionally, another family of proteins calls pannexins (Panx) also forms functional hemichannels at the plasma membrane. Recently, Panxhemichannels have been involved in both pathological and physiological processes. Controlled hemichannel opening allows the release of small signaling molecules including ATP, glutamate, NAD+, adenosine, cyclic nucleotides, PGE2. They also allow uptake of relevant signaling molecules (e.g., cADPR) and metabolites (e.g., glucose). Additionally, a growing body of evidence shows that hemichannels are involved in important processes, such glucose detection in tanicytes, activation of the inflammasome, memory consolidation in the basolateral amygdala, potentiation of muscle contraction and release of nitric oxide from endothelial cells, among others. However, hemichannels can also play an important role in the homeostatic imbalance observed in diverse chronic diseases. In fact, massive and/or uncontrolled hemichannel opening induces or accelerates cell death in several pathological conditions including Charcot-Marie-Tooth disease, ischemia, oculodentodigital dysplasia, hydrotic ectodermic dysplasia, inflammatory responses, and deafness. Hemichannel-mediated cell death is due mainly to an entry of Ca+2. The latter activates proteases, nucleases and lipases, causing irreversible cell damage. An increasing amount of evidence demonstrates that blockade of uncontrolled hemichannel opening greatly reduces the cellular damage observed in several chronic diseases models. Therefore, Cx and Panx-hemichannels appear as promising drug targets for clinical treatment of human chronic diseases. Therefore, pharmacological tools are urgently needed to further elucidate hemichannels functions and to validate them as drug targets for the development of novel therapies for connexin-based diseases. Thus, understanding the role of Cx and Panx-hemichannels under physiological conditions and recognizing the molecular mechanisms controlling them, may provide us with a better picture of the hemichannels participation in some diseases and of the signals underlying their malfunctioning.




Gap Junction Structure and Chemical Regulation


Book Description

Gap Junction Structure and Chemical Regulation: Direct Calmodulin Role in Cell-to-Cell Channel Gating describes and discusses the findings of major studies conducted during the past century on the structure and chemical regulation of direct cell-to-cell communication via gap junction channels. Chapters bring together important findings on direct cell communication, from its history, to its structure and regulation. These channels are essential for normal organ function, and mutations in their protein (connexin) cause various diseases. The book is useful for established investigators who need a review on the field and young investigators who need a thorough resource for study and comprehension. - Contains comprehensive, historical coverage on direct cell-to-cell communication - Provides detailed coverage of gap junction channel structure and regulation, with extensive coverage of the direct role of calmodulin in channel gating - Delivers a thorough description of models proposed for the chemical gating of gap junction channels




The Journal of Cell Biology


Book Description

No. 2, pt. 2 of November issue each year from v. 19 (1963)-47 (1970) and v. 55 (1972)- contain the Abstracts of papers presented at the Annual Meeting of the American Society for Cell Biology, 3d (1963)-10th (1970) and 12th (1972)-




Index Medicus


Book Description

Vols. for 1963- include as pt. 2 of the Jan. issue: Medical subject headings.




Advances in Vision Research, Volume III


Book Description

This third volume, with three supporting editors, broadens its focus on genetic eye research from the Asian to the global scale. New efforts and a new awareness have sparked important discussions on genetic eye research, and new plans are being implemented to identify the genes responsible for numerous eye diseases. The book introduces the latest findings on genetics in eye diseases, gene therapy, and genome-wide association analysis, and the efforts of the Global Eye Genetic Consortium (GEGC). The book’s editors have been instrumental in developing strategies for discovering the new genes involved in many eye diseases. All chapters were written by leading researchers working on eye genetics from the fields of Human Genetics, Ophthalmology, Molecular Biology, Biochemistry, Sensory Sciences, and Clinical Research. Advances in Vision Research, Volume III is a major resource for all researchers, clinicians, clinical researchers, and allied eye health professionals with an interest in eye diseases around the globe.