Single Crystals of Electronic Materials


Book Description

Single Crystals of Electronic Materials: Growth and Properties is a complete overview of the state-of-the-art growth of bulk semiconductors. It is not only a valuable update on the body of information on crystal growth of well-established electronic materials, such as silicon, III-V, II-VI and IV-VI semiconductors, but also includes chapters on novel semiconductors, such as wide bandgap oxides like ZnO, Ga2, O3, In2, O3, Al2, O3, nitrides (AIN and GaN), and diamond. Each chapter focuses on a specific material, providing a comprehensive overview that includes applications and requirements, thermodynamic properties, schematics of growth methods, and more. Presents the latest research and most comprehensive overview of both standard and novel semiconductors Provides a systematic examination of important electronic materials, including their applications, growth methods, properties, technologies and defect and doping issues Takes a close look at emerging materials, including wide bandgap oxides, nitrides and diamond













Electronic Materials


Book Description

Electronic materials are a dominant factor in many areas of modern technology. The need to understand'them is paramount; this book addresses that need. The main aim of this volume is to provide a broad unified view of electronic materials, including key aspects of their science and technology and also, in many cases, their commercial implications. It was considered important that much of the contents of such an overview should be intelligible by a broad audience of graduates and industrial scientists, and relevant to advanced undergraduate studies. It should also be up to date and even looking forward to the future. Although more extensive, and written specifically as a text, the resulting book has much in common with a short course of the same name given at Coventry Polytechnic. The interpretation of the term "electronic materials" used in this volume is a very broad one, in line with the initial aim. The principal restriction is that, with one or two minor exceptions relating to aspects of device processing, for example, the materials dealt with are all active materials. Materials such as simple insulators or simple conductors, playing only a passive role, are not singled out for consider ation. Active materials might be defined as those involved in the processing of signals in a way that depends crucially on some specific property of those materials, and the immediate question then concerns the types of signals that might be considered.




Handbook of Electronic Materials


Book Description

This report was prepared by Hughes Aircraft Company, Culver City, California under Contract Number F33615-70-C-1348. The work was administered under the direc tion of the Air Force Materials Laboratory, Air Force Systems Command, Wright Patterson Air Force Base, Ohio, with Mr. B. Emrich, Project Engineer. The Electronic Properties Information Center (EPIC) is adesignated Information Analysis Center of the Department of Defense, authorized to provide information to the entire DoD community. The purpose of the Center is to provide a highly competent source of information and data on the electronic, optical and magnetic properties of materials of value to the Department of Defense. Its major function is to evaluate, compile and publish the experimental data from the world's unclassified literature concerned with the properties of materials. All materials relevant to the field of electronics are within the scope of EPIC: insulators, semiconductors, metals, super conductors, ferrites, ferroelectrics, ferromagnetics, electroluminescents, thermionic emitters and optical materials. The Center's scope includes information on over 100 basic properties of materials; information gene rally regarded as being in the area of devices and/or circuitry is excluded. Grateful acknowledgement is made for the review and comments by Dr. Victor Rehn of the U. S. Naval Ordnance Test Station at China Lake, California, as weIl as for review by staff members of the National Bureau of Standards, National Standard Data Reference System. v CONTENTS Introduction . •. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Composite Data Table. . . . . . . . . . . . . . . . . . . . . . . . . 5 Diamond. . . . . . . . •. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Bibliography . . . . . . •. . . . . . . . . . . . . . . . . . . . . . . 11 Germanium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Bibliography . . . . . . . . •. . . . . . . . . . . . . . . . . . . . . 28 Silicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .







Growth and Properties of Single-crystal Materials for Opto-electronics


Book Description

Single-crystal materials currently in the use in various fields of optoelectronics are reviewed from the viewpoint of materials science. The characteristics of crystal-line laser hosts, nonlinear optic crystals, electroptic crystals, and ultrasonic light diffraction solid media are described. The present status of crystal growth by the pulling method is discussed, and relations between the growth conditions and defects in the obtained crystals are stressed. The necessary steps in the process of device fabrication are analyzed, and some important factors such as phase diagram information, domain structure in oxide ferro-electrics, and laser damage susceptibility are pointed out. Some theoretical treatments of oxide ferroelectric crystals useful for materials scientists are reviewed.




An Introduction to Electronic Materials for Engineers


Book Description

Presents an overview of various materials, such as conducting materials, semiconductors, magnetic materials, optical materials, dielectric materials, superconductors, thermoelectric materials and ionic materials. This title includes chapters on thin film electronic materials, organic electronic materials and nanostructured materials.




Handbook of Electronic Materials


Book Description

This report was prepared by Hughes Aircraft Company, Culver City, California under Contract Number F33615-70-C-1348. The work was administered under the direc tion of the Air Force Materials Laboratory, Air Force Systems Command, Wright Patterson Air Force Base, Ohio, with Mr. B. Emrich, Project Engineer. The Electronic Properties Information Center (EPIC) is a designated Information Analysis Center of the Department of Defense authorized to provide information to the entire DOD community. The purpose of the Center is to provide a highly competent source of information and data on the electronic, optical and magnetic properties of materials of value to the Department of Defense. Its major function is to evaluate, compile and publish the experimental data from the world's unclassified literature concerned with the properties of materials. All materials relevant to the field of electronics are within the scope of EPIC: insulators, semiconductors, metals, super conductors, ferrites, ferroelectric, ferromagnetics, electroluminescents, thermionic emitters and optical materials. The Center's scope includes information on over 100 basic properties of materials; information generally regarded as being in the area of devices and/or circuitry is excluded.