Single Membrane Channels Formed by Connexins or Pannexins: Focus on the Nervous System


Book Description

Given that the extremely elaborated and dynamic functions performed by the nervous system require the close synchronization of brain cells, complex organisms have developed different mechanisms of intercellular communication. At this regard, paracrine signaling between neighboring cells is currently recognized as one of the most widely distributed mechanisms of synchronization in the brain parenchyma. In mammals, paracrine signaling is in part mediated by single membrane channels formed by connexins (connexons/hemichannels) or pannexins (pannexons), which are two different membrane protein families composed of about 20 and 3 members, respectively. Single membrane channels formed by these proteins serve as aqueous pores permeable to ions and small molecules, allowing the diffusional exchange between the intra- and extracellular milieu. Thus, connexin hemichannels and pannexons permit the release of significant quantities of autocrine/paracrine signaling molecules (e.g., ATP, glutamate, NAD+, adenosine and PGE2) into the extracellular milieu, as well as the uptake of small molecules. An increasing body of evidence has revealed that connexin hemichannels and pannexons play a crucial role in a plethora of brain processes including blood flow regulation, Ca2+ wave propagation, memory consolidation, glucose sensing and cell migration and adhesion. Considering the multiple cell signaling functions of these channels, their dysregulation is proposed not only as potential pathological biomarker, but it has been implicated in the pathogenesis and progression of diverse brain diseases (e.g., meningitis, Alzheimer’s disease and stroke). The aim of this Research Topic is to gather a collection of original research articles, method, protocols, short communications, opinions, perspectives, as well as review articles, providing the latest progress and insights in the field of connexin hemichannels and pannexons in the nervous system. Within this volume we plan to cover from basic research including channel structure, regulation, pharmacology and trafficking; to different biological functions in the physiology (behavior, plasticity, neurogenesis, blood flow control, neuron-glia crosstalk, cell migration and differentiation) as well as in the pathophysiology (neuroinflammation, mutation-related diseases, glial dysfunction and neurodegeneration) of the nervous system. We hope that this collection of articles will serve to understand how the signaling of connexin hemichannels and pannexons influences both normal and pathological brain function.




Gap Junction Channels and Hemichannels


Book Description

Gap junction channels are a group of intercellular channels expressed in tissues and organs to synchronize many physiological processes. A gap junction channel is formed by the docking of two hemichannels, and each hemichannel is a hexamer of connexins. The field of gap junction channel and hemichannel research has recently exploded and became one of the most active areas of cell biology. Numerous novel approaches and techniques have been developed, but there is no single book dedicated to the unique techniques and protocols employed for the research on these large pore channels. This book fills the gap and focuses on protocols, approaches and reviews of gap junction channels and connexin hemichannels. It will be a useful reference for graduate students, postdoctoral fellows and researchers. Anyone with an interest in gap junction channels and hemichannels will need this summary of state-of-the-art techniques and protocols.




Astrocytes and Epilepsy


Book Description

Epilepsy is a devastating group of neurological disorders characterized by periodic and unpredictable seizure activity in the brain. There is a critical need for new drugs and approaches given than at least one-third of all epilepsy patients are not made free of seizures by existing medications and become "medically refractory". Much of epilepsy research has focused on neuronal therapeutic targets, but current antiepileptic drugs often cause severe cognitive, developmental, and behavioral side effects. Recent findings indicate a critical contribution of astrocytes, star-shaped glial cells in the brain, to neuronal and network excitability and seizure activity. Furthermore, many important cellular and molecular changes occur in astrocytes in epileptic tissue in both humans and animal models of epilepsy. The goal of Astrocytes and Epilepsy is to comprehensively review exciting findings linking changes in astrocytes to functional changes responsible for epilepsy for the first time in book format. These insights into astrocyte contribution to seizure susceptibility indicate that astrocytes may represent an important new therapeutic target in the control of epilepsy. Astrocytes and Epilepsy includes background explanatory text on astrocyte morphology and physiology, epilepsy models and syndromes, and evidence from both human tissue studies and animal models linking functional changes in astrocytes to epilepsy. Beautifully labelled diagrams are presented and relevant figures from the literature are reproduced to elucidate key findings and concepts in this rapidly emerging field. Astrocytes and Epilepsy is written for neuroscientists, epilepsy researchers, astrocyte investigators as well as neurologists and other specialists caring for patients with epilepsy. - Presents the first comprehensive book to synthesize historical and recent research on astrocytes and epilepsy into one coherent volume - Provides a great resource on the field of astrocyte biology and astrocyte-neuron interactions - Details potential therapeutic targets, including chapters on gap junctions, water and potassium channels, glutamate and adenosine metabolism, and inflammation




Intercellular Communication in the Nervous System


Book Description

Intercellular communication is part of a complex system of communication that governs basic cellular activities and coordinates cell actions. The ability of cells to perceive and correctly respond to their environment is the basis of growth and development, tissue repair, and immunity as well as normal tissue homeostasis. Errors in cellular information processing are responsible for diseases such as cancer, autoimmunity, diabetes, and neurological and psychiatric disorders. There is substantial drug development concentrating on this and intercellular communication is the basis of much of neuropharmacology. By understanding cell signaling, diseases may be treated effectively and, theoretically, artificial tissues may be yielded. Neurotransmitters/receptors, synaptic structure and organization, gap junctions, neurotrophic factors and neuropeptides are all explored in this volume, as are the ways in which signaling controls neuroendocrinology, neuroimmunology and neuropharmacology. Intercellular Communication in the Nervous System provides a valuable desk reference for all scientists who consider signaling. - Chapters offer impressive scope with topics addressing neurotransmitters/receptors, synaptic structure and organization, neuropeptides, gap junctions, neuropharmacology and more - Richly illustrated in full color with over 200 figures - Contributors represent the most outstanding scholarship in the field, with each chapter providing fully vetted and reliable expert knowledge




Lung Epithelial Biology in the Pathogenesis of Pulmonary Disease


Book Description

Lung Epithelial Biology in the Pathogenesis of Pulmonary Disease provides a one-stop resource capturing developments in lung epithelial biology related to basic physiology, pathophysiology, and links to human disease. The book provides access to knowledge of molecular and cellular aspects of lung homeostasis and repair, including the molecular basis of lung epithelial intercellular communication and lung epithelial channels and transporters. Also included is coverage of lung epithelial biology as it relates to fluid balance, basic ion/fluid molecular processes, and human disease. Useful to physician and clinical scientists, the contents of this book compile the important and most current findings about the role of epithelial cells in lung disease. Medical and graduate students, postdoctoral and clinical fellows, as well as clinicians interested in the mechanistic basis for lung disease will benefit from the books examination of principles of lung epithelium functions in physiological condition. - Provides a single source of information on lung epithelial junctions and transporters - Discusses of the role of the epithelium in lung homeostasis and disease - Includes capsule summaries of main conclusions as well as highlights of future directions in the field - Covers the mechanistic basis for lung disease for a range of audiences




Enteric Glia


Book Description

The enteric nervous system (ENS) is a complex neural network embedded in the gut wall that orchestrates the reflex behaviors of the intestine. The ENS is often referred to as the “little brain” in the gut because the ENS is more similar in size, complexity and autonomy to the central nervous system (CNS) than other components of the autonomic nervous system. Like the brain, the ENS is composed of neurons that are surrounded by glial cells. Enteric glia are a unique type of peripheral glia that are similar to astrocytes of the CNS. Yet enteric glial cells also differ from astrocytes in many important ways. The roles of enteric glial cell populations in the gut are beginning to come to light and recent evidence implicates enteric glia in almost every aspect of gastrointestinal physiology and pathophysiology. However, elucidating the exact mechanisms by which enteric glia influence gastrointestinal physiology and identifying how those roles are altered during gastrointestinal pathophysiology remain areas of intense research. The purpose of this e-book is to provide an introduction to enteric glial cells and to act as a resource for ongoing studies on this fascinating population of glia. Table of Contents: Introduction / A Historical Perspective on Enteric Glia / Enteric Glia: The Astroglia of the Gut / Molecular Composition of Enteric Glia / Development of Enteric Glia / Functional Roles of Enteric Glia / Enteric Glia and Disease Processes in the Gut / Concluding Remarks / References / Author Biography




Gap Junctions in the Nervous System


Book Description

This book deals with the types of gap junction proteins (connexins) and their distribution within the nervous system, the physiological properties of channels formed of each connexin, and the role of gap junction channels in functions of normal and pathological brain and peripheral nerve. Although glial tissue is emphasized, additional groups of chapters deal with neurons in the central nervous system and with the retina.




Update on Emerging Treatments for Migraine


Book Description

Update on Emerging Treatments for Migraine, Volume 255, the latest release in the Progress in Brain Research series, highlights new advances in the field, with this new volume presenting interesting chapters. Each chapter is written by an international board of authors. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Progress in Brain Research series - Updated release includes the latest information on Update on Emerging Treatments for Migraine




The Endothelium


Book Description

The endothelium, a monolayer of endothelial cells, constitutes the inner cellular lining of the blood vessels (arteries, veins and capillaries) and the lymphatic system, and therefore is in direct contact with the blood/lymph and the circulating cells. The endothelium is a major player in the control of blood fluidity, platelet aggregation and vascular tone, a major actor in the regulation of immunology, inflammation and angiogenesis, and an important metabolizing and an endocrine organ. Endothelial cells controls vascular tone, and thereby blood flow, by synthesizing and releasing relaxing and contracting factors such as nitric oxide, metabolites of arachidonic acid via the cyclooxygenases, lipoxygenases and cytochrome P450 pathways, various peptides (endothelin, urotensin, CNP, adrenomedullin, etc.), adenosine, purines, reactive oxygen species and so on. Additionally, endothelial ectoenzymes are required steps in the generation of vasoactive hormones such as angiotensin II. An endothelial dysfunction linked to an imbalance in the synthesis and/or the release of these various endothelial factors may explain the initiation of cardiovascular pathologies (from hypertension to atherosclerosis) or their development and perpetuation. Table of Contents: Introduction / Multiple Functions of the Endothelial Cells / Calcium Signaling in Vascular Cells and Cell-to-Cell Communications / Endothelium-Dependent Regulation of Vascular Tone / Conclusion / References




From Molecules to Networks


Book Description

An understanding of the nervous system at virtually any level of analysis requires an understanding of its basic building block, the neuron. From Molecules to Networks provides the solid foundation of the morphologic, biochemical, and biophysical properties of nerve cells. All chapters have been thoroughly revised for this second edition to reflect the significant advances of the past 5 years. The new edition expands on the network aspects of cellular neurobiology by adding a new chapter, Information Processing in Neural Networks, and on the relation of cell biological processes to various neurological diseases. The new concluding chapter illustrates how the great strides in understanding the biochemical and biophysical properties of nerve cells have led to fundamental insights into important aspects of neurodegenerative disease. - Written and edited by leading experts in the field, the second edition completely and comprehensively updates all chapters of this unique textbook - Discusses emerging new understanding of non-classical molecules that affect neuronal signaling - Full colour, professional graphics throughout - Includes two new chapters: Information Processing in Neural Networks - describes the principles of operation of neural networks and the key circuit motifs that are common to many networks in the nervous system. Molecular and Cellular Mechanisms of Neurodegenerative Disease - introduces the progress made in the last 20 years in elucidating the cellular and molecular mechanisms underlying brain disorders, including Amyotrophic Lateral Sclerosis (ALS), Parkinson disease, and Alzheimer's disease