Singlet Oxygen


Book Description

Meeting the desire for a comprehensive book that collects and curates the vast amount of knowledge gained in the field of singlet oxygen, this title covers the physical, chemical and biological properties of this reactive oxygen species and also its increasingly important applications across chemical, environmental and biomedical areas.The editors have a long and distinguished background in the field of singlet oxygen chemistry and biomedical applications, giving them a unique insight and ensuring the contributions attain the highest scientific level.The book provides an up to date reference resource for both the beginner and experienced researcher and crucially for those working across disciplines such as photochemistry, photobiology and photomedicine.




Singlet Oxygen


Book Description




Singlet Molecular Oxygen


Book Description




Singlet Oxygen


Book Description

Meeting the desire for a comprehensive book that collects and curates the vast amount of knowledge gained in the field of singlet oxygen, this title covers the physical, chemical and biological properties of this reactive oxygen species and also its increasingly important applications across chemical, environmental and biomedical areas.The editors have a long and distinguished background in the field of singlet oxygen chemistry and biomedical applications, giving them a unique insight and ensuring the contributions attain the highest scientific level.The book provides an up to date reference resource for both the beginner and experienced researcher and crucially for those working across disciplines such as photochemistry, photobiology and photomedicine.




Singlet Oxygen Detection and Imaging


Book Description

Singlet Oxygen, the lowest electronically excited state of molecular oxygen, is highly reactive and involved in many chemical and biological processes. It is one major mediator during photosensitization, which has been used by mankind since ancient times, even though the mechanisms behind it were understood only about half a century ago. The combination of high reactivity and very long natural lifetime allows for direct optical detection of singlet oxygen and its interactions using its characteristic phosphorescence at around 1270 nm. Since this emission is very weak, optical detection was technically very challenging for a long time. Therefore, even today, most laboratories only exploit the high reactivity to observe the interaction with sensor molecules, rather than singlet oxygen emission itself. However, in recent years highly sensitive optical detection was developed, the authors being major contributors. This book is dedicated to the detection of singlet oxygen, discussing possibilities, pitfalls and limits of the various methods with a special focus on time-resolved phosphorescence and the kinetics of singlet oxygen generation and decay including involved and related processes, discussing investigated systems with various complexity from solutions over in vitro to in vivo. The long-standing paradigm that singlet oxygen phosphorescence is a benchmark for detection systems rather than an option for process observation is still ubiquitous and this book hopes to contribute in overcoming this still prevailing bias.




The Photochemistry of Carotenoids


Book Description

Written by leading experts in the area of carotenoid research, this book gives a comprehensive overview of a various topics in the field. The contributions review the basic hypotheses about how carotenoids function and give details regarding testing different molecular models using state-of-the-art experimental methodologies.




Singlet Molecular Oxygen


Book Description




Singlet Oxygen, UV-A and Ozone


Book Description

Recent advances in understanding the biological role of singlet oxygen in the pathways of cellular responses to ultraviolet-A radiation: its key position in photodynamical effects, and its generation by photochemical (dark) reactions, e.g. by cells of the immune system such as eosinophils and macrophages, are the focus of this volume. The new methods and techniques responsible for the rapid progress in this area are presented. The critically acclaimed laboratory standard for more than forty years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Since 1955, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with more than 300 volumes (all of them still in print), the series contains much material still relevant today--truly an essential publication for researchers in all fields of life sciences.




Oxidative Damage to Plants


Book Description

With contributions that review research on this topic throughout the world, Oxidative Damage to Plants covers key areas of discovery, from the generation of reactive oxygen species (ROSs), their mechanisms, quenching of these ROSs through enzymatic and non-enzymatic antioxidants, and detailed aspects of such antioxidants as SOD and CAT. Environmental stress is responsible for the generation of oxidative stress, which causes oxidative damage to biomolecules and hence reduces crop yield. To cope up with these problems, scientists have to fully understand the generation of reactive oxygen species, its impact on plants and how plants will be able to withstand these stresses. - Provides invaluable information about the role of antioxidants in alleviating oxidative stress - Examines both the negative effects (senescence, impaired photosynthesis and necrosis) and positive effects (crucial role that superoxide plays against invading microbes) of ROS on plants - Features contributors from a variety of regions globally




Active Oxygen in Chemistry


Book Description

Taking an interdisciplinary approach, this book and its counterpart, Active Oxygen in Biochemistry, explore the active research area of the chemistry and biochemistry of oxygen. Complementary but independent, the two volumes integrate subject areas including medicine, biology, chemistry, engineering, and environmental studies.