Sintering


Book Description

Sintering is the process of forming materials and components from a powder under the action of thermal energy. It is a key materials science subject: most ceramic materials and many specialist metal powder products for use in key industries such as electronics, automotive and aerospace are formed this way. Written by one of the leading experts in the field, this book offers an unrivalled introduction to sintering and sintering processes for students of materials science and engineering, and practicing engineers in industry. The book is unique in providing a complete grounding in the principles of sintering and equal coverage of the three key sintering processes: densification, grain growth and microstructure. Students and professional engineers alike will be attracted by the emphasis on developing a detailed understanding of the theory and practical processes of sintering, the balanced coverage of ceramic and metal sintering, and the accompanying examination questions with selected solutions. - Delivering unrivalled depth of coverage on the basis of sintering, science, including thermodynamics and polycrystalline microstructure. - Unique in its balanced coverage of the three key sintering elements - densification, grain growth and microstructure. - A key reference for students and engineers in materials science and engineering, accompanied by examination questions and selected solutions.




Sintering of Ceramics


Book Description

Sintering of Ceramics provides the only comprehensive treatment of the theories and principles of sintering and their application to the production of advanced ceramics with the required target microstructure. Stemming from the author's bestselling text, Ceramic Processing and Sintering, this book includes additional material selected




Sintering Theory and Practice


Book Description

Although sintering is an essential process in the manufacture ofceramics and certain metals, as well as several other industrialoperations, until now, no single book has treated both thebackground theory and the practical application of this complex andoften delicate procedure. In Sintering Theory and Practice, leadingresearcher and materials engineer Randall M. German presents acomprehensive treatment of this subject that will be of great useto manufacturers and scientists alike. This practical guide to sintering considers the fact that while thebonding process improves strength and other engineering propertiesof the compacted material, inappropriate methods of control maylead to cracking, distortion, and other defects. It provides aworking knowledge of sintering, and shows how to avoid problemswhile accounting for variables such as particle size, maximumtemperature, time at that temperature, and other problems that maycause changes in processing. The book describes the fundamental atomic events that govern thetransformation from particles to solid, covers all forms of thesintering process, and provides a summary of many actual productioncycles. Building from the ground up, it begins with definitions andprogresses to measurement techniques, easing the transition,especially for students, into advanced topics such as single-phasesolid-state sintering, microstructure changes, the complications ofmixed particles, and pressure-assisted sintering. German draws onsome six thousand references to provide a coherent and lucidtreatment of the subject, making scientific principles andpractical applications accessible to both students andprofessionals. In the process, he also points out and avoids thepitfalls found in various competing theories, concepts, andmathematical disputes within the field. A unique opportunity to discover what sintering is all about--bothin theory and in practice What is sintering? We see the end product of this thermal processall around us--in manufactured objects from metals, ceramics,polymers, and many compounds. From a vast professional literature,Sintering Theory and Practice emerges as the only comprehensive,systematic, and self-contained volume on the subject. Covering all aspects of sintering as a processing topic, includingmaterials, processes, theories, and the overall state of the art,the book * Offers numerous examples, illustrations, and tables that detailactual processing cycles, and that stress existing knowledge in thefield * Uses the specifics of various consolidation cycles to illustratethe basics * Leads the reader from the fundamentals to advanced topics,without getting bogged down in various mathematical disputes overtreatments and measurements * Supports the discussion with critically selected references fromthousands of sources * Examines the sintering behavior of a wide variety of engineeredmaterials--metals, alloys, oxide ceramics, composites, carbides,intermetallics, glasses, and polymers * Guides the reader through the sintering processes for severalimportant industrial materials and demonstrates how to controlthese processes effectively and improve present techniques * Provides a helpful reference for specific information onmaterials, processing problems, and concepts For practitioners and researchers in ceramics, powder metallurgy,and other areas, and for students and faculty in materials scienceand engineering, this book provides the know-how and understandingcrucial to many industrial operations, offers many ideas forfurther research, and suggests future applications of thisimportant technology. This book offers an unprecedented opportunity to explore sinteringin both practical and theoretical terms, whether at the lab or inreal-world applications, and to acquire a broad, yet thorough,understanding of this important technology.




Sintering: From Empirical Observations to Scientific Principles


Book Description

As sintering applications march toward a $30 billion global business, the models for sintering have progressed, but generally follow behind observation. Documentation of the steps needed to build to a quantitative and predictive theory are often missed. Sintering: From Empirical Observations to Scientific Principles partitions sintering applications and observations to show critical turning points required to establish modern sintering as a predictive science. This book, written by the most cited author in his field, is laced with people, organizations, critical steps, and important formulations in a mixture of history, personalities, and applications. Exploring how insights in seemingly unrelated fields sparked progress, it is also a teaching tool to show where there is success, where there are problems, and how to organize teams to leapfrog to new applications or plateaus of use. Randall German's Sintering: From Empirical Observations to Scientific Principles is a platform for directly addressing the critical control parameters in these new research and development efforts. - Shows how the theories and understanding of sintering were developed and improved over time, and how different products were developed, ultimately leading to important knowledge and lessons for solving real sintering problems - Covers all the necessary infrastructure of sintering theory and practice, such as atomic theory, surface energy, microstructure, and measurement and observation tools - Introduces the history and development of such early sintered products as porcelain, tungsten lamp filaments, bronze bearings, steel automotive components, platinum crucibles and more




Sintering of Advanced Materials


Book Description

Sintering is a method for manufacturing components from ceramic or metal powders by heating the powder until the particles adhere to form the component required. The resulting products are characterised by an enhanced density and strength, and are used in a wide range of industries. Sintering of advanced materials: fundamentals and processes reviews important developments in this technology and its applicationsPart one discusses the fundamentals of sintering with chapters on topics such as the thermodynamics of sintering, kinetics and mechanisms of densification, the kinetics of microstructural change and liquid phase sintering. Part two reviews advanced sintering processes including atmospheric sintering, vacuum sintering, microwave sintering, field/current assisted sintering and photonic sintering. Finally, Part three covers sintering of aluminium, titanium and their alloys, refractory metals, ultrahard materials, thin films, ultrafine and nanosized particles for advanced materials.With its distinguished editor and international team of contributors, Sintering of advanced materials: fundamentals and processes reviews the latest advances in sintering and is a standard reference for researchers and engineers involved in the processing of ceramics, powder metallurgy, net-shape manufacturing and those using advanced materials in such sectors as electronics, automotive and aerospace engineering. - Explores the thermodynamics of sintering including sinter bonding and densification - Chapters review a variety of sintering methods including atmosphere, vacuum, liquid phase and microwave sintering - Discusses sintering of a variety of materials featuring refractory metals, super hard materials and functionally graded materials




Liquid Phase Sintering


Book Description

In the past few years there has been rapid growth in the activities involving particulate materials because of recognized advantages in manufacturing. This growth is attributed to several factors; i) an increased concern over energy utilization, ii) a desire to better control microstructure in engineermg materials, iii) the need for 1mproved material economy, iv) societal and economic pressures for higher productivity and quality, v) requirements for unique property combinations for high performance applica tions, and vi) a desire for net shape forming. Accordingly, liquid phase sintering has received increased attention as part of the growth in particulate materials processing. As a consequence, the commercial applications for liquid phase sintering are expanding rapidly. This active and expanding interest is not well served by available texts. For this reason I felt it was appropriate to write this book on liquid phase sintering. The technology of liquid phase sintering IS quite old and has been in use in the ceramics industry for many centuries. However, the general perception among materials and manufacturing engineers is that liquid phase sintering is still a novel technique. I believe the diverse technological appli cations outlined in this book will dispel I such impressions. Liquid phase. sintering has great value in fabricating several unique materials to near net shapes and will continue to expand in applications as the fundamental attrib utes are better appreciated. I am personally involved with several uses for liquid phase sintering.




Densification of Metal Powders During Sintering


Book Description

Sintering of powder metal compacts is one of the basic oper ations in powder metallurgy. The useful properties of a machine part are obtained after considerable densification of the sintered material. Although the mechanical properties of the part depend on other structural factors besides porosity, porosity is the main factor. Usually, the practical problem in sintering is to obtain a part with the desired or permissible porosity. Thus, knowledge of the laws governing densification and its final result is neces sary to control this process in the production of powder metal parts. The laws governing densification are also important for a more exact physical theory of sintering, which is still in the initial stages of its development. Such processes as the change in the density of lattice defects and the flow of crystalline substances during sintering have not yet received a complete physical inter pretation. Analysis of the laws of sintering may provide addition al material for more complete phenomenological characteristics of these processes that will be useful for further development of theoretical concepts of the flow of imperfect crystals under small loads. Although a substantial amount of experimental material has been accumulated, generalizations are still difficult.




Sintering Technology


Book Description

Based on the sintering conference held at the Pennsylvania State University, USA, this text presents advances in the application of sintering to the most important industrial materials. It offers results on both solid-state and microphase sintering as well as microstructure evolution, and introduces new applications, processes, materials and solutions to technical problems.




Field-Assisted Sintering


Book Description

This book represents the first ever scientific monograph including an in-depth analysis of all major field-assisted sintering techniques. Until now, the electromagnetic field-assisted technologies of materials processing were lacking a systematic and generalized description in one fundamental publication; this work promotes the development of generalized concepts and of comparative analyses in this emerging area of materials fabrication. This book describes modern technologies for the powder processing-based fabrication of advanced materials. New approaches for the development of well-tailored and stable structures are thoroughly discussed. Since the potential of traditional thermo-mechanical methods of material treatment is limited due to inadequate control during processing, the book addresses ways to more accurately control the resultant material's structure and properties by an assisting application of electro-magnetic fields. The book describes resistance sintering, high-voltage consolidation, sintering by low-voltage electric pulses (including spark plasma sintering), flash sintering, microwave sintering, induction heating sintering, magnetic pulse compaction and other field-assisted sintering techniques. Includes an in-depth analysis of all major field-assisted sintering techniques; Explains new techniques and approaches for material treatment; Provides detailed descriptions of spark plasma sintering, microwave sintering, high-voltage consolidation, magnetic pulse compaction, and various other approaches when field-assisted treatment is applied.




Spark Plasma Sintering of Materials


Book Description

This book describes spark plasma sintering (SPS) in depth. It addresses fundamentals and material-specific considerations, techniques, and applications across a broad spectrum of materials. The book highlights methods used to consolidate metallic or ceramic particles in very short times. It highlights the production of complex alloys and metal matrix composites with enhanced mechanical and wear properties. Emphasis is placed on the speed of the sintering processes, uniformity in product microstructure and properties, reduced grain growth, the compaction and sintering of materials in one processing step, various materials processing, and high energy efficiency. Current and potential applications in space science and aeronautics, automation, mechanical engineering, and biomedicine are addressed throughout the book.